

تجزیه و تحلیل مختصات نرمال طیف ارتعاشی و سد پتانسیل چرخشی گروه های متیل و تری فلورو متیل ۱،۱،۱-تری فلورو استون

محبوبه غلامحسین پور^۱، سید فرامرز طیاری^۲*، سعید رضا امامیان^۱ دانشگاه آزاد اسلامی، واحد شاهرود، دانشکده علوم پایه، گروه شیمی، شاهرود، ایران ۲مشهد- دانشگاه فردوسی- دانشکده علوم پایه، گروه شیمی

تاريخ ثبت اوليه: ١٣٩٢/١١/٧، تاريخ دريافت نسخه اصلاح شده: ١٣٩٣/١/٢ ، تاريخ پذيرش قطعي: ١٣٩٣/٢/١

چکیدہ

در این پژوهش طیف ارتعاشی و سد انرژی برای چرخش داخلی گروه های متیل و تری فلورو متیل مولکول ۱،۱۰۱-تری فلورو استون با استفاده از نظریه تابعی چگالی (DFT) بررسی شده است. محاسبات فرکانس در سطح (Gdf,3pd)++B(3df,3pd) انجام گرفت و فرکانسهای محاسبه شده با استفاده از ضریب مقیاسی به مقادیر تجربی بسیار نزدیک شدهاند. سپس با استفاده از شدت نوارهای مادون قرمز و فعالیت نوارهای رامان محاسبه شده این ارتعاشات، طیف های ارتعاشی شبیه سازی، مورد بررسی و تجزیه و تحلیل قرار گرفتند. برای محاسبه انرژی چرخشی گروه های متیل و تری فلورو متیل از سطوح محاسباتی MP2 و MSLYP با توابع پایه مختلف استفاده شده است. علاوه بر این، با استفاده از مختصات جابه جایی اتم ها که از خروجی گوسین محاسبه شده است، مختصات تقارنی محاسبه و با استفاده از آن مختصات نرمال فرکانسهای ارتعاشی بنیادی مورد تجزیه و تحلیل قرار گرفت. با استفاده از مختصات تقارنی هنجار شده توزیع انرژی پتانسیل برای هر فرکانس بنیادی نیز محاسبه گردید.

واژه های کلیدی: ۱،۱،۱ -تری فلورو استون، طیف ارتعاشی، نظریه تابعی چگالی، سد انرژی چرخش، تجزیه و تحلیل مختصات طبیعی، مختصات تقارنی.

۱. مقدمه

تری فلورو استون فعالیتهای از خود نشان می دهد که در استون و دیگر کتونهای مشابه دیده نمی شود. علاوه بر اثرات فیزیکی که این گروه ایجاد می کند، تری فلورو خاصیت الکترون دوستی گروه کربونیل را نیز افزایش می دهد. این ترکیب در محیط های آبی هیدراته شده و تعادل عمدتا به سمت gem-diol پیش می رود [۱]که در مجاورت یک ترکیب قلیایی تری مر می گردد [۲]. طیف های ارتعاشی مادون قرمز و رامان این ترکیب در فاز های گازی مایع، و جامد توسط Durig و Church مورد بررسی قرار گرفته است [۳]. Durig و Church شیوه پیچشی گروه

^{*}**عهده دار مکاتبات:** سید فرامرز طیاری

نشانی: مشهد – دانشگاه فردوسی – دانشکده علوم – گروه شیمی

تلفن: ۰۹۱۵۳۱۰۳۵۳ پست الکترونيک: E-mail: sftayyari@hotmail.com

متیل در این ترکیب را به صورت نواری پهن و قوی در ^۲- ۴۰ مشاهده کردند [۳]. این محققین با استفاده از این نتیجه ونتایج حاصل از پراش الکترونی [۴] یک سد پتانسیل مرتبه سوم به ارتفاع ۲۰۰ ۳۲۰ را محاسبه کردند. با این وصف Durig و همکاران در مطالعات بعدی ارتفاع این سد را به مقدار کمتری برابر ۲۰۰ ۱±۲۹۵ تخمین زدند [۵]. این محققین سد انرژی پتانسیل چرخشی برای گروه CF₃ بسیار نزدیک به سد چرخش برای گروه CH₃ در استون برابر دانستند که مقدار آن را برابر ۲۹۱ cm¹ تخمین زدند [۶]. ولی این مقدار بسیار کمتر از ارتفاع سد چرخش گروه CH₃ در تری فلورو استون است که توسط این محققین مقداری برابر ۲۹۱ cm¹ تخمین زدند [۶]. ولی این مقدار بسیار کمتر از ارتفاع سد چرخش گروه CH₃ در تری فلورو استون است که توسط این محققین مقداری برابر ۱±۲۹۲ تخمین زدند (۶]. ولی این مقدار است[۴].

هدف از این پژوهش بررسی مجدد طیف های ارتعاشی تری فلورو استون با کمک سطوح پیشرفته نظریه تابعی چگالی (DFT) و با استفاده از تجزیه و تحلیل مختصات نرمال ارتعاشات مولکولی است. در این پژوهش همچنین کوشش می شود تناقضات مشاهده شده در نتایج به دست آمده برای بررسی سد انرژی پتانسیل در مقابل چرخش گروه های متیل و تری فلورومتیل بررسی و در صورت امکان تصحیح گردد.

۲. محاسبات

همه محاسبات با نرم افزار گوسین ۹۰ [۷] انجام شده است. فرکانس های ارتعاشی در سطح محاسباتی B3LYP [۸،۹] با استفاده از تابع پایه -6 (3df,3pd) (3df,3pd) (3df) (3

با استفاده از خروجی گوسین میزان جابه جایی هر اتم در هریک از ارتعاشات بنیادی محاسبه گردید. و سپس با توجه به موقعیت هر اتم قبل از ارتعاش و میزان جابه جایی بعد از هر ارتعاش محاسبه مختصات داخلی یعنی میزان تغییر طول، تغییر زوایا، و تغییر زوایای دو وجهی در هر ارتعاش محاسبه گردید. با استفاده از این مختصات داخلی توانستیم مختصات تقارنی را به دست آوریم. جزئیات این محاسبات در جایی دیگر توضیح داده شده است [10–۱۴].

۳. نتايج و بحث

۳-۱. سد چرخشی

انرژی سد پتانسیل در مقابل دوران گروه های متیل و تری فلورو متیل در جدول ۱ داده شده اند. چنانکه در جدول ۱ نشان داده شده است، محاسبه سد پتانسیل برای چرخش گروههای CF₃ و CH₃ در سه سطح محاسباتی با توابع پایه به اندازه کافی بزرگ انجام شده است در همه این محاسبات انرژی سد چرخش متیل کمتر از تری فلورو متیل است. این نتیجه در تناقض با نتایج تجربی است. مقادیر انرژی محاسبه شده برای CH₃ به مقدار تجربی CF₃ نزدیک است و مقدار محاسبه شده برای گروه CF₃ به مقدار تجربی برای CH₃ نزدیکتر است. بنظر می رسد در این محاسبات اشتباه شده است. محاسبه سد پتانسیل چرخشی با روش های مختلف برای 2G₉ و CH₃ به مقدار تجربی برای CH₃ نزدیکتر است. بنظر می رسد در این محاسبات ولی مقادیر تجربی گزارش شده برای این گروه ها به ترتیب ۲۹± ۲۹۳ و CH₃ است. این نتایج نشان می دهند که سدهای انرژی تجربی ولی محاسبه شده اند.

سد چرخش CF ₃	سد چرخش CH ₃	سطح محاسباتي
362	301	MP2/Aug-cc-pVTZ
492	345	MP2/6-311G(2dp,pd)
373	314	MP2/6-311++G(3df,3pd)

جدول ۱. انرژی سد پتانسیل در مقابل چرخش گروهای متیل و تری فلورو متیل در تری فلورواستون[°]

^a انرژی بر حسب عدد موج ^{cm⁻¹}

۲-۳. تجزیه و تحلیل طیف ارتعاشی

مولکول تری فلورو استون، چنانکه محاسبات نشان می دهند، متعلق به گروه تقارنی Cs است. بنابراین این مولکول ۱۰ اتمی دارای ۱۵ ارتعاش داخل صفحه ای و ۹ ارتعاش خارج صفحه ای است. تحلیل مختصات طبیعی فرکانسهای ارتعاشی تری فلورو استن در جدول ۲ و فرکانس های محاسبه شده در سطوح مختلف همراه با فرکانسهای مشاهده شده در جدول ۳ داده شدهاند.

تعاریف مختصات داخلی و مختصات تقارنی به کار رفته برای محاسبات توزیع انرژی پتانسیل (PED) و تجزیه و تحلیل مختصات طبیعی (نرمال) در جدول ۳ داده شدهاند. چنانکه اشاره شد، تعداد مختصات تقارنی برابر SN-6 است و همه آنها روی ۲۴ مختصه طبیعی هنجار شدهاند. چنانکه جدول ۳ نشان می دهد توافق بسیار خوبی بین فرکانسهای نا هماهنگ و مقادیر متناظر تجربی وجود دارد. طیف IR و رامان تری فلورو استون شبیه سازی شده با روش (B3LYP/6-311++G(3df,3pd به ترتیب در شکلهای ۲ و ۳ نشان داده شده اند. ساختار مولکول و نامگذاری اتم ها در شکل ۱ نشان داده شده اند.

مشخصات باند ارتعاشي مولكول تري فلورو استون.	جدول۲.	
---	--------	--

No.	F1	Assignments (PED)	F2	Ref. [3]	Ref. [3]
A'					
ν1	3003	vaCH ₃ (72),δsCH ₃ (11)	3029	va'CH ₃	v16
ν2	2928	vsCH ₃ (66), vaCH ₃ (15), \deltasCH ₃ (9)	2939	vsCH ₃	ν2
ν3	1803	vC=O(52), dCCC(14), pCF ₃ (10), pCH ₃ (7)	1781	vC=O	v3
ν4	1426	δaCH ₃ (45),ρCH ₃ (12), vsCH ₃ (9), δCCC(8), vCO(6)	1431	δaCH ₃	ν4
ν5	1369	δsCH ₃ (39), vaCC(11), δCCC(9), ρCH ₃ (9), vsCH ₃ (8)	1374	δsCH ₃	ν5
ν6	1279	vaCC(14), \deltasCH ₃ (15), \deltasCF ₃ (10), vsCF ₃ (9), vaCF ₃ (9), vsCC(9)	1320	vaCC	ν6
ν7	1180	vaCF ₃ (37), δaCF ₃ (19), δCCC(8), vaCC(8), vsCF ₃ (8)	1225	va'CF ₃	v18
ν8	1097	vsCF ₃ (15), δsCF ₃ (12), ρCH ₃ (10), vsCC(9), δsCO(11)	1115	vsCF ₃	ν8
ν9	953	ρCH ₃ (18), δCCC(14), vaCC(15), δaCH3(11), vsCC(10)	965	ρCH_3	ν9
v10	750	vsCF ₃ (29), δsCF ₃ (26), vsCC(18)	759	vsCC	v10
v11	611	δCO(21), vsCC(14), vaCF ₃ (11), δsCF ₃ (13), δaCF ₃ (9), ρCH ₃ (6)	616	δsCF_3	v11
v12	551	δaCF ₃ (19), vaCF ₃ (15), δsCF ₃ (9), δCO(8), ρCH ₃ (7), ρCF ₃ (8)	564	δaCF ₃	v12
v13	412	δaCF3(27), ρCF ₃ (16), δCO(10), vaCC(10), δsCF3(8)	421	δССС	v13
v14	360	δC=O(17), ρCF ₃ (14), δsCF3(13), δaCF ₃ (13), vsCC(11), vaCC(8)	360	δCO	v14
v15	233	ρCF3(34), δCCC(23), vsCF ₃ (13), vaCC(8), δCO(8)	231	pCF3	v15
A''					
v16	2954	va'CH ₃ (91)	2969	vaCH ₃	ν1
v17	1423	δa'CH ₃ (74), πCH ₃ (19)	1435	δa'CH ₃	v17
v18	1109	va'CF ₃ (43), δa'CF ₃ (17), πCF ₃ (14), πCH ₃ (11), γCO(10)	1164	va'CF ₃	ν7
v19	1016	πCH ₃ (32), va'CF ₃ (28), δa'CF ₃ (11), da'CH3(11), γC=O(14)	1024	πCH3	v19

وسكوپى	و اسپکتر	سال چهارم، شماره ۹، بهار ۱۳۹۳ مع مجله شیمی کوانتوم				۲۲
v20	619	γCO(25),πCF ₃ (21), pCH ₃ (19), da'CF ₃ (15), na'CF ₃ (13)	625	2v23+v15		
v21	493	δa'CF ₃ (47), γCO(19), πCF ₃ (11), πCH ₃ (10)	499	δa'CF3	v20	
v22	232	πCF ₃ (52), γC=O(28)	246	πCF_3	v22	
v23	114	$\tau CH_3(82), \tau CF_3(17)$	121	τCH_3	v23	
v24	*	τCF ₃ (82), τCH ₃ (17)	40	τCF_3	v24	

^a v, δ , π , ρ , τ , γ , are stand for stretching, deformation, out-of-plane rocking, in-plane bending, torsion, and out-of-plane bending vibrations; a and s stand for asymmetric and symmetric vibrations, respectively; primed symbols stand for out-of-plane movements. F1, calculated anharmonic wavenumbers obtained at the B3LYP/6-311++G(3df,3pd); F2, observed wavenumbers (gas phase),

با توجه به جدول ۲ مشاهده می شود که تناقض های زیادی بین انتساب نوارهای ارتعاشی مشاهده شده به شیوه های نرمال داده شده توسط Durig و horra و ¹ Taya Cm⁻¹ و ¹ Taya Cm⁻¹ و Porra و اولی یک حرکت داخل صفحه و دومی یک ارتعاش خارج از صفحه است ولی Durig و همکارش [۳] وارونه آن را در نظر گرفتند. حرکت از تعاشی کششی متقارن در ¹ Taya بیش بینی شده است که مقدار تجربی فاز گازی آن ¹ Taya Cm⁻¹ است. نکته جالب در این جا آن است که ارتعاشی کششی متقارن در ¹ Taya Cm⁻¹ پیش بینی شده است که مقدار تجربی فاز گازی آن ¹ Taya Cm⁻¹ است. نکته جالب در این جا آن است که نوارهای ارتعاشی کششی متقارن در ¹ Taya Cm⁻¹ پیش بینی شده است که مقدار تجربی فاز گازی آن ¹ Taya Cm⁻¹ است. نکته جالب در این جا آن است که نوارهای ارتعاشی کششی متقارن در ¹ Taya Ch⁻¹ پیش بینی شده است که مقدار تجربی فاز گازی آن ¹ Taya Cm⁻¹ است. نکته جالب در این جا آن است که نوارهای ارتعاشی کششی متقارن در ¹ Taya Ch⁻¹ پیش بینی شده است که مقدار تجربی فاز گازی آن ¹ Taya Ch⁻¹ است. نکته جالب در این جا آن است که نوارهای ارتعاشی کششی متقارن داخل صفحه و متقارن هردو به میزان قابل توجهی با حرکت خمشی متقارن گروه ¹ Ch⁻¹ مخلوط شده اند. حرکت حرکت کششی CH⁻² یود با خمش Ch⁻² و حرکتهای جنبانه ای (rocking) گروههای ¹ Ch⁻² و Stepهای در تعامی است زیرا در حرکت کششی O⁻² به منظور حفظ مرکز ثقل مولکول اتم C⁻¹ بیشتر از اتم O⁻¹ به جا می شود. نتیجه این امر آن است که زاویه CH⁻² می شود. باعث ای که حرکت بنانه ای (rocking) در آن است Ch⁻² وههای در CH⁻² می شود. حرکت جنبانه ای (rocking) در آن است CH⁻² می شود. جرکت جنبانه ای (rocking) در گروههای در CH⁻² می شود. حرکت جنبانه ای ای (rocking) در Ch⁻² می شود. حرکت جنبانه ای در Ch⁻² معاور در ¹ معار در Ch⁻² می شود. در Ch⁻² می مقدار متاظر محاسبه شده دارد ¹ Tay Ch⁻² و و CH⁻² می شود. حرکت جنبانه ای Ch⁻² ور Ch⁻² ور

شکل ۱. تری فلورو استون و شماره گزاری اتمها

شكل۲. طيف IR ترى فلورو استون شبيه سازى شده با روش (B3LYP/6-311++G(3df,3pd.

شكل3. طيف رامان ترى فلورو استون شبيه سازى شده با روش (B3LYP/6-311++G(3df,3pd.

مجله شیمی کوانتومی و اسپکتروسکوپی

سال چهارم، شماره ۹، بهار ۱۳۹۳

جدول ۳. فرکانسهای ارتعاشی بنیادی محاسبه شده و مشاهده شده تری فلورو استون در فاز گازی. ^ه										
شماره	F1	F1a	F1s	F2	I _{IR}	F3	F3a	I _{IR}	R _a	Fob
A'										
ν1	3190	3039	3030	3153	3	3156	3003	2	56	3029
ν2	3077	2997	2923	3042	0	3045	2928	0	133	2939
ν3	1824	1789	1777	1837	161	1840	1804	125	13	1781
ν4	1501	1471	1462	1466	27	1467	1426	26	9	1431
ν5	1424	1398	1387	1393	22	1394	1369	18	1	1333
ν6	1351	1328	1316	1308	45	1312	1279	34	4	1320
ν7	1243	1217	1211	1198	271	1206	1180	246	1	1225
ν8	1138	1115	1109	1116	159	1121	1097	142	1	1115
ν9	981	968	956	967	34	967	953	31	2	965
v10	767	757	748	754	1	760	750	0	9	766
v11	622	615	606	616	28	618	611	28	4	616
v12	562	558	547	552	11	555	551	10	1	564
v13	423	419	412	415	2	416	412	2	2	421
v14	363	364	354	357	1	359	360	1	2	360
v15	230	234	224	226	5	227	233	5	0	237
A''										
v16	3144	2997	2986	3101	1	3102	2954	1	49	2971
v17	1499	1471	1460	1467	13	1469	1423	12	6	1455
v18	1170	1146	1139	1124	245	1133	1109	212	2	1115
v19	1057	1037	1030	1036	68	1039	1016	67	0	1024
v20	631	624	614	622	1	624	619	1	0	625
v21	499	497	486	494	3	496	493	3	1	499
v22	233	233	227	230	2	232	233	2	1	246
v23	114	80	111	110	0	114	57	0	0	95
v24	26	-24	25	33	5	32	-33	5	1	40

^e F1a، F1، و Fs به ترتیب عبارتند از فرکانسهای ارتعاشی هماهنگ، ناهماهنگ، و مقیاس شده محاسبه شده در سطح B2PLYP/6-311G(d). F3 فرکانس هماهنگ محاسبه شده در سطح **B3LYP/6-311++G، F3 و F3، ترتیب فرکانسهای هماهنگ و ناهماهنگ محاسبه شده در سطح -B3LYP/6 (3df,3pd).

نوار مشاهده شده در ^۱-Durig طبق محاسبات ما یک حرکت داخل صفحه ای است (۷7) ولی Durig آن را به یک حرکت خارج از صفحه نسبت داده است (۷۱8). از طرف دیگر Durig حرکت خارج از صفحه کششی CF (۷۱8) را به یک حرکت داخل صفحه ای منتسب کرد (۷7). از دیگر اختلاف انتساب های دیده شده در جدول ۲ می توان به نوار ضعیف ^۱-۵۲ مثاره کرد که Durig این نوار را به یک نوار ترکیبی مرتبط کرد [۳]. ولی چنانکه در جدول ۲ مشاهده می شود، این نوار به ۷20 مربوط می شود.

Durig و Church [۳] نوار ضعیف در طیف رامان گازی و مایع در ۲۰۰ ۳۷۰ را به ۷2۱ (خمش خارج از صفحه C=O) نسبت دادند. چنانکه جدول ۲ نشان می دهد، حرکت خمشی خارج از صفحه C=O در شیوه های ارتعاشی ۷28-۷18 سهم قابل ملاحظه ای دارد. این محققین نوار ۱۰۲۴ cm⁻¹ را به یکی از نوارهای گونه 'A نسبت دادند. نکته قابل توجه آن است که این محققین نوار رامان فاز گازی در ۹۹۰ cm⁻¹ را معادل نوار IR در ۲۰۰ ۱۰۲۴ cm

٤. نتيجه گيري

طیاری و همکاران

با استفاده از روش DFT در سطح B3LYP/6-311++G(3df,3pd) طیف ار تعاشی IR و رامان تری فلورو استون شبیه سازی شد. با استفاده از مختصات جابه جایی محاسبه شده از خروجی گوسین مختصات تقارنی و مختصات نرمال ارتعاشات بنیادی محاسبه و توزیع انرژی پتانسیل این ارتعاشات محاسبه شد. نتایج به دست آمده برای توزیع انرژی پتانسیل ارتعاشات مولکولی در اغلب موارد با نتایج قبلی همحوتنی دارد و لی نشان داده شد که چند انتساب ارتعاشی قبلی نیز صحیح نیستند. علاوه بر آن سد انرژی پتانسیل در مقابل چرخش گروههای متیل و تری فلورو متیل نیز محاسبه گردید و نشان داده شد که سد های محاسبه شده قبلی درست نبوده است. با استفاده از روش (Mgdf,3pd) H-+112-6/9 محاسبه گردید و نشان داده شد که سد های محاسبه شده قبلی درست نبوده است. با استفاده از روش (Mgdf,3pd سد چرخش برای در CF3 و CF3 به ترتیب ۳۶۲ و ¹⁻ ۳۰۱cm است. محاسبات ما نشان می دهند که نتیجه گیریهای Durig در باره انرژی های سد چرخش

٥. مراجع

[1] H.J. Buschmann, H.H. Fueldner, W. Knoche, Ber. Bunsen-Ges., 84 (1980) 41.

- [2] P. Saaidi, M. Guyonnet, E. Jeanneau, P. Fleuret-Lessardt, J. Hasserodt, J. Org. Chem., 73 (2008) 1209.
- [3] J.R. Durig, J.S. Church, Spectrochim. Acta Part A, 36 (1979) 957.
- [4] A.L. Andreassen and S. H. Bauer, J. Mofec. Sffucr., 12 (1972) 381.
- [5] J.R. Durig, A.R. Fanning, T.G. Sheehan, G.A. Guirgis, Spectrochimica Acta, Part A, 41 (1991) 279.
- [6] P. Groner, G.A. Guirgis and J.R. Durig, J. Chem. Phys., 86 (1987) 565.

[7] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,

O. Yazyev, A.J. Austin, R. Cammi, C.Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT, (**2009**).

[8] A.D. Becke, Phys. Rev. A, 38 (1988) 3098.

- [9] A.D. Becke, J. Chem. Phys., 98 (1993) 5648.
- [10] V. Barone, J. Chem. Phys., 122 (2005) 1.
- [11] V. Barone, J. Chem. Phys., 120 (2004) 3059.
- [12] D.A. Clabo, W.D. Allen, R.B. Remington, Y. Yamaguchi and H.F. Schaefer, Chem. Phys., 123 (1988) 187.
- [13] M. Head-Gordon and T. Head-Gordon, Chem. Phys. Lett., 220 (1994) 122.
- [14] F. Dolati, S.F. Tayyari, M. Vakili, J. Mol. Struct., 1094 (2015) 264.
- [15] S. Soltani-Ghoshkhaneh, M. Vakili, S.F. Tayyari, A-R Berenji, J. Mol. Struct., 1103 (2016) 35.