

بررسی و مقایسه طیفهای H-NMR و ¹³C-NMR مولکول -2,3,4,13-(2-nitrophenyl) بررسی و مقایسه طیفهای tetrahydro-1*H*-indazolo[1,2-b]phthalazine-1,6,11-trione در سطوح تجربی و تئوری

ا**امید گلی جلودار*، ^۲مهدی محسنی، ^۲سید محسن بابازاده** ۱ دانشگاه آزاد اسلامی، واحد رشت، دانشکده شیمی، گیلان، ایران ۲ دانشگاه آزاد اسلامی، واحد شاهرود، دانشکده علوم پایه، گروه شیمی، شاهرود، ایران

تاريخ ثبت اوليه:١٣٩۴/٥/١٣، تاريخ دريافت نسخه اصلاح شده:١٣٩۴/۶/١٢، تاريخ پذيرش قطعى:١٣٩۴/۶/٢٧

چکیدہ

در این تحقیق، طیفهای NMR هیدروژن ۱ و کربن ۱۳ مولکول-2,3,4,13-tetrahydro-1*H*-indazolo[1,2-مولکول-2-2,3,4,13-tetrahydro-1*H*-indazolo] میدروژن ۱ و کربن ۱۳ هیدروژن ۱ و در سطح تئوری **B3LYP/6-31G شبیه سازی شده است که جابه جایی های شیمیایی همین ایم است که جابه جایی های شیمیایی هیدروژن ۱ و کربن ۱۳ در محاسبات صورت گرفته، در توافق قابل قبولی نسبت به جابه جایی شیمیایی همین اتم ها در طیف های تجربی بدست آمده می باشد.

واژههای کلیدی: DFT جا به جایی شیمیایی، طیف NMR

۱. مقدمه

تر کیبات هتروسیکلیک، فعالیتهای مختلف زیستی که در زندگی روزمره ضروری است را بر عهده دارند. در میان این تر کیبات، هتروسیکل -های حاوی نیتروژن به دلیل استفادههای دارویی و بیولوژیکی فعال، از اهمیت ویژه ایی بر خور دار هستند [۹-۳] . مشتقات فتالازین که شامل دو اتم نیتروژن سرپل در یک سیستم حلقه ایی می باشند، با توجه به فعالیت های مهم بیولوژیکی و دارویی مانند ضد تشنج، مقوی قلب، سیتوتو کسیک، ضد میکروبی، ضد قارچ، ضد سرطان و ضد التهاب، توجه محققان را به خود جلب کر ده اند [۰۰-۱]. همچنین این تر کیبات در مواد شب تاب یا پروب فلورسانس نیز مورد استفاده قرار می گیرند [۲۱]. شکل ۱ برخی از داروهای مهم تجاری حاوی جایگزین چارچوب پل N-N را نشان می دهد مانند سلکو کسیب، متامیزول، زالپلون، سیلدنافیل و فیپرونیل [۲۲].

عهدەدار مكاتبات: اميد گلى جلودار

نشانی: دانشگاه گیلان، دانشکده شیمی

تلفن: ۰۹۱۱۳۱۱۵۶۲۶ پست الکترونیک: E-mail: omid.goli@ymail.com

شکل ۱. ساختار داروهای حاوی پل N-N

2H-Indazolo[2,1-b]phthalazinetriones به عنوان مهمترین مشتقات فتالازین بشمار میروند که از طریق تراکم سه جزء فتالاهیدرازین، دایمدون و آلدئیدهای آروماتیک، سنتز میشوند. انواع کاتالیزور مانند سیانوریک کلرید، Mg(HSO4)2، ید، سولفوریک اسید، سریک آمونیوم نیترات، سیلیس پلی اسید فسفریک، p- تولوئن سولفونیک اسید، H14 [NaP5W30O110] و ملامین تری سولفونیک اسید، برای سنتز این نوع از ترکیبات استفاده می شود[۳۱–۲۲].

۲. بخش تجربی و آزمایشگاهی

۱-۲. آماده سازی مواد و تجهیزات

مواد شیمیایی از شرکتهای شیمیایی Merc و Fluka خریداری شدند. بستر انجام واکنش در سیلیکاژل بوده است. طیف FT-IR در شرکت VERTEX 70 آلمان با استفاده از قرصهای KBr، و طیفهای H-NMR و H-NMR از دستگاه BRUKER Avance 400 MHz در DMSO-D6 با استفاده از TMS به عنوان یک استاندارد داخلی، تهیه گردیده است.

2H-indazolo[2,1-b]phthalazine-1,6,11(13H)-triones دوش عمومی برای آماده سازی

مخلوطی از آلدهید (۱٫۰ میلی مول)، دایمدون (۱٫۰ میلی مول)، فتالاهیدرازین (۱٫۰ میلی مول) و ACL[(2)(DABCO-SO3H)2]-NS در ۸۰ درجه سانتیگراد تحت شرایط بدون حلال گرم شد. واکنش های TLC مورد سنجش قرار گرفت [n-هگزان : اتیل استات (۱۰ : ۲)]. پس از اتمام، واکنش تا دمای اتاق سرد شد و سپس با آب برای جدایی از کاتالیزور شسته شدند. این محصول توسط تبلور مجدد در اتانول آبی تا ۸۵٪ خالص شد. مکانیسم سنتز H-indazolo[2,1-b]phthalazine-1,6,11(13H)-triones در شکل ۲ نمایش داده شده است. در جدول ۱ نیز اثر دما، میزان کاتالیست و حلال بر سنتز یکی از مشتقات این نوع از ترکیبات نشان داده شده است.

جدول ۱. اثر دما، میزان کاتالیست و حلال بر میزان سنتز phthalazine-1,6,1-trione]/-3,3-dimethyl-2,3,4,13-tetrahydro-1H-indazolo[1,2-b]

Entry	Catalyst amount ^a	Solvent	Temperature	Time(min)	Yield (%) ^b
1	3	EtOH	r.t.	90	45
2	4	EtOH	r.t.	90	45
3	5	EtOH	r.t.	90	60
4	3	EtOH	Reflux	60	70
5	4	EtOH	Reflux	60	75
6	5	EtOH	Reflux	60	75
7	3	CH_2Cl_2	Reflux	90	30
8	4	CH ₂ Cl ₂	Reflux	90	30
9	5	CH_2Cl_2	Reflux	90	30
10	3	Solvent free	80°C	20	87
11	4	Solvent free	80 °C	14	90
12	5	Solvent free	80 °C	8	96
13	4	Solvent free	100 °C	12	85
14	5	Solvent free	100 °C	8	90

^a mol%.

^b Isolated yield.

دادههای طیفی برای این ترکیبات به شرح زیر میباشد :

13-(2-Chlorophenyl)-2,3,4,13-tetrahydro-1*H***-indazolo[1,2-b]phthalazine-1,6,11-trione (m) :** White solid.; M.p.: 232-234 °C.; FT-IR (KBr, ν, cm⁻¹): 3018, 1662, 1489, 1364, 777.; ¹H NMR (400 MHz, DMSO-*d*₆, δ, ppm): 2.13-2.14 (m, 2H, CH₂), 2.32-2.36 (m, 2H, CH₂), 3.29-3.45 (m, 2H, CH₂), 6.61 (s, 1H, CH), 7.27-7.31 (m, 2H, Ar-H), 7.39-7.41 (m, 2H, Ar-H), 7.52-7.54 (m, 1H, Ar-H), 7.09-8.00 (m, 2H, Ar-H), 8.08-8.10 (m, 1H, Ar-H), 8.28-8.30 (m, 1H, Ar-H).

13-(2-Nitrophenyl)-2,3,4,13-tetrahydro-1*H***-indazolo**[**1,2-b**]**phthalazine-1,6,11-trione (n) :** White solid.; M.p.: 248-250 °C.; FT-IR (KBr, *ν*, cm⁻¹): 3016, 1730, 1650, 1630, 1600, 1082.; ¹H NMR (400 MHz, DMSO-*d*₆, δ, ppm): 2.10-2.17 (m, 2H, CH₂), 2.33-2.36 (m, 2H, CH₂), 3.24-3.45 (m, 2H, CH₂), 7.18 (s, 1H, CH), 7.52-7.56 (1H, td, *J*₁ = 7.2 Hz, *J*₂ = 1.2 Hz), 7.61-7.65 (1H, td, *J*₁ = 7.2 Hz, *J*₂ = 1.2 Hz), 7.70-7.72 (2H, dd, *J*₁ = 8.0 Hz, *J*₂ = 1.2 Hz), 7.97-8.01 (m, 3H, Ar-H), 8.07-8.11 (m, 1H, Ar-H), 8.27-8.29 (m, 1H, Ar-H).; ¹³C NMR (100 MHz, DMSO-*d*₆, δ, ppm) : 192.75, 155.87, 154.40, 154.21, 149.28, 135.07, 134.37, 134.13, 131.80, 131.25, 129.78, 129.61, 133.538, 132.547, 132.393, 132.108, 125.427, 63.976, 39.559, 27.569, 25.566.

4-(1,6,11-Trioxo-2,3,4,6,11,13-hexahydro-1*H***-indazolo[1,2-b]phthalazin-13-yl)benzonitrile (t) :** White solid.; M.p.: 284-285 °C.; FT-IR (KBr, *v*, cm⁻¹): 3018, 2200, 1720, 1655, 1626, 1602, 1080. ¹H NMR (400 MHz, DMSO-*d*₆, δ, ppm): 2.11-2.13 (m, 2H, CH₂), 2.33-2.36 (m, 2H, CH₂), 3.21-3.26 (m, 2H, CH₂), 6.35 (s, 1H, CH), 7.71-7.73 (d, *J* = 8 Hz, 2H, Ar-H), 7.79-7.81 (d, *J* = 8 Hz, 2H, Ar-H), 7.97-8.01 (m, 2H, Ar-H), 8.09-8.11 (m, 1H, Ar-H), 8.28-8.30 (m, 1H, Ar-H).

شكل ٢. مكانيسم تشكيل H-indazolo[2,1-b]phthalazine-1,6,11(13H)-triones در حضور NS-[C4(DABCO-SO3H)2].4Cl

۳. بخش تئوری و محاسباتی

در این قسمت NMR با یکدیگر و اختصاص هر پیک به اتم مربوطه انتخاب شده است. بهینه سازی این ترکیب و همینطور طیفهای نظری طیف به دست آمده NMR با یکدیگر و اختصاص هر پیک به اتم مربوطه انتخاب شده است. بهینه سازی این ترکیب و همینطور طیفهای NMR بخش محاسباتی، از طریق روش DFT و در سطح محاسباتی **B3LYP / 6-311 ++ G به عنوان یک سطح تئوری در DMSO محاسبه گردیده است. همه محاسبات با نرم افزار گوسین ۰۹ انجام شد[۳۳]. ساختار بهینه سازی شده در شکل ۳ ارائه شده است.

شکل ۳. ساختار بهینه شده از 13-(2-nitrophenyl)-2,3,4,13-tetrahydro-1*H*-indazolo[1,2-b]phthalazine-1,6,11-trione شکل ۳.

هر دو نوع طیف از محاسبات تئوری و دادههای تجربی جهت مقایسه در شکل ۴ و میزان جابهجایی شیمیایی نیز برای هر دو آنها، هم برای -H^۱ NMR و NMR-¹³C-NMR، در جدول ۲ نمایش داده شده است.

(C)

(D)

۲. میزان جا به جایی شیمیایی بدست آمده از طیفهای H-NMR ¹ و C-NMR ¹ از حالتهای تجربی (قدین (d _{Cak}) و تئوری (d _{Cak}) برای ترکیب -(b _{Cak})) از میزان جا به جایی شیمیایی بدست آمده از طیفهای H-NMR ¹ و C-NMR	جدول
2,3,4,13-tetrahydro-1 <i>H</i> -indazolo[1,2-b]phthalazine-1,6,11-trione	

Atom	δCalc.	δexp.	Atom	δCalc.	δexd.	Atom	δCalc.	δexp.
	o cuic.	о Цар.		o cuit.	o Exp.		o cuit.	o Exp.
C-18	202.398	192.75	C-3	133.538	129.33	31-H	8.1563	8.014-7.972 (7.993)
C-7	161.883	155.87	C-26	132.547	128.79	30-H	8.1563	8.014-7.972 (7.993)
C-14	161.658	154.40	C-6	132.393	128.06	43-H	7.783	7.729-7.706 (7.717)
C-10	160.052	154.21	C-23	132.108	127.29	34-Н	7.783	7.652-7.611 (7.631)
C-22	156.757	149.28	C-13	125.427	124.85	42-H	7.644	7.568-7.526 (7.547)
C-12	141.535	135.07	C-11	63.976	59.30	44-H	7.644	7.187
C-25	141.188	134.37	C-17	39.559	36.76	35-Н	3.700	3.459-3.381 (3.42)
C-1	140.606	134.13	C-15	27.569	24.55	36-H	3.049	3.318-3.255 (3.286)
C-2	139.502	131.80	C-16	25.566	22.3	40-H	2.430	2.380-2.337 (2.358)
C-24	134.085	131.25	32-Н	8.711	8.275-8.296 (8.285)	39-Н	2.174	2.380-2.337 (2.358)
C-4	133.969	129.78	33-Н	8.520	8.085-8.107 (8.096)	37-Н	2.174	2.171-2.124 (2.147)
C-5	133.708	129.61	41-H	8.268	8.014-7.972 (7.993)	38-H	2.035	2.171-2.124 (2.147)

همه جابهجاییهای شیمیایی اندازه گیری شده در سطح تئوری با توجه به TMS برای H^I و C^{SI} به ترتیب در محدوده ۲/۰۳۵ تا ۸/۷۱۱ و ۲۲/۳۹ می به ۲۵/۵۶ می باشد. این در حالی است که مقادیر تجربی محدوده ۲/۱۴ تا ۸/۲۸۵ و ۲۲/۳۰۰ تا ۱۹۲/۷۵۰ تا ۱۹۲/۷۵۰ می باشد. این در حالی است که مقادیر تجربی محدوده ۲/۱۴ تا ۸/۲۸۵ و ۲۲/۳۰۰ تا ۱۹۲/۷۵۰ تا ۲۲/۳۰ می به ۲۰ همبستگی و ارتباط جابهجاییهای شیمیایی بین این مقادیر تجربی و تئوری برای هر دو نوع طیف H-NMR و ۱۹۰۳ و ۱۳C-NMR در شکل ۵ ارائه شده است.

13-(2-nitrophenyl)-2,3,4,13-tetrahydro-1*H*- برای ترکیب ¹³C-NMR شکل ۵. ار تباط بین مقادیر تجربی و تئوری جا به جایی های شیمیایی طیف های H-NMR و indazolo[1,2-b]phthalazine-1,6,11-trione

٤. بحث و نتيجه گيري

٤. منابع

M. Shekouhy, A. Hasaninejad, Ultrasonics Sonochemistry 19 (2012) 307.
T. Akiyama, Chem. Rev. 107 (2007) 5744.

٣٤

- [3] E. C. Franklin, Chem. Rev. 16 (1935) 305.
- [4] F.W. Bergstrom, Chem. Rev. 35 (**1944**) 77.
- [5] S. Suzuki, K. Kataoka and K. Kamaguchi, Acc. Chem. Res. 33 (2002) 728.
- [6] V.P. Litvinov, Russ. Chem. Rev. 72 (2003) 69.
- [7] C. Turk, J. Svete, B. Stanovnik, L. Golic, S. Golic-Grdadolnik, C. A. Golobic and L. Selic, Helv. Chim. Acta 84 (2001) 146.
- [8]. J. S. Kim, H.k. Rhee, H.J. Park, S. K. Lee, C.O. Lee and H.Y. Park Choo, Bioorganic. Med. Chemistry. 16 (2008) 4545.
- [9]. R. Dua, S. Shrivastava, S. K. Sonwane and S.K. Srivastava, Advances in Biological Research 5 (2011) 120.

[10] X.Y. Sun, C.X. Wei, X. Q. Deng, Z. G. Sun and Z. S. Quan, Pharmacological Reports 62 (2010) 273.

- [11] M. Asif, Curr. Med. Chem. 19 (2012) 2984.
- [12] F. M. Awadallah, W. I. EI-Eraky and D. O. Saleh, European J. Medicinal Chem. 52 (2012) 14.
- [13] Y. Nomoto, H. Obase, H. Takai, M. Teranishi, J. Nakamura and K. Kubo, Chem. Pharm. Bull. (Tokyo) 38 (**1990**) 2179.
- [14] N. Watanabe, Y. Kabasawa, Y. Takase, M. Matsukura, K. Miyazaki, H. Ishihara, K. Kodama and H. Adachi, J. Med. Chem. 41 (**1998**) 3367.
- [15] J.S. Kim, H.K. Rhee, H.J. Park, S.K. Lee, C.O. Lee and H.Y. Park Choo, Bioorg. Med. Chem. 16 (2008) 4545.
- [16] S. S. El-Sakka, A. H. Soliman and A. M. Imam, Afinidad 66 (2009) 167.
- [17] C.K. Ryu, R.E. Park, M.Y. Ma and J.H. Nho, Bioorg. Med. Chem. Lett. 17 (2007) 2577.
- [18] J. Li, Y.F. Zhao, X.Y. Yuan, J.X. Xu and P. Gong, Molecules 11 (2006) 574.
- [19] J. Sinkkonen, V. Ovcharenko, K. N. Zelenin, I. P. Bezhan, B. A. Chakchir, F. Al-Assar and K. Pihlaja, Eur. J. Org. Chem. 13 (**2002**) 2046.
- [20] S. Grasso, G. DeSarro, N. Micale, M. Zappala, G. Puia, M. Baraldi and C. Demicheli, J. Med. Chem. 43 (2000) 2851.
- [21] H. Wu, X. M. Chen, Y. Wan, H. Q. Xin, H. H. Xu, R. Ma, C. H. Yue and L. L. Pang, Lett. Org. Chem. 6 (2009) 219.
- [22] José E. R. Nascimento, Daniela H. de Oliveira, Paola B. Abib, Diego Alves, Gelson Perin, and Raquel G. Jacob, J. Braz. Chem. Soc. 26 (**2015**) 1533.
- [23] X. Wang, WW. Ma, LQ. Wu and FL. Yan, J. Chin. Chem. Soc. 57 (2010) 1341.
- [24] H.R. Shaterian, F. Khorami, A. Amirzadeh, R. Doostmohammadi and M. Ghashang, J. Iran. Chem. Res. 2 (2009) 57.
- [25] A. Varghese, A. Nizam, R. Kulkarni and L. George, Eur. J. Chem. 4 (2013) 132.
- [26] J.M. Khurana and D. Magoo, Tetrahedron Lett. 50 (2009) 7300.
- [27] K. Mazaahir, C. Ritika and J. Anwar, Chin. Sci. Bull. 57 (2012) 2273.
- [28] H.R. Shaterian, A. Hosseinian and M. Ghashang, ARKIVOC ii, 59 (2009).
- [29] M. Sayyafi, M. Seyyedhamzeh, H.R. Khavasi and A. Bazgir, Tetrahedron 64 (2008) 2375.
- [30] A. Gharib, B.R.H. Khorasani, M. Jahangir and J.H.W. Scheeren, Bulg. Chem. Commun. 45 (2013) 64.
- [31] A. Khazaei, M.A. Zolfigol, T. Faal-Rastegara, G. Chehardoli and S. Mallakpour, Iran. J. Catal. 3 (2013) 211.
- [32] O. Goli-Jolodar, F. Shirini, M. Seddighi, RSC Adv. 6 (2016) 26026.
- [33] M. J. Frisch, et al. Gaussian-03 ed.; Gaussian, Inc.: Wallingford CT, (2003).
- [34] A.R. Kiasat, S. Noorizadeh, M. Ghahremani, S.J. Saghanejad, J. Mol. Struct. 1036 (2013) 216.