

مطالعه نظری و تجربی تاتومری مشتقات هالوژنه پارا-تری فلوئوروبنزوئیل استون به کمک نظریه تابعی چگالی و طیف سنجی ارتعاشی

وحیدرضا دارو گر*، محمد وکیلی، سید فرامرز طیاری گروه شیمی، دانشکده علوم پایه، دانشگاه فردوسی مشهد، مشهد، ایران

تاريخ ثبت اوليه:١٣٩٧/١١/١، تاريخ دريافت نسخه اصلاح شده:١٣٩٧/١٢/١٥، تاريخ پذيرش قطعي:١٣٩٧/١٢/٢

چکیدہ

تجزیه و تحلیل ساختار مولکولی و پایداریهای نسبی برای صورتبندیهای پایدار سیس-انول در مولکولهای تری فلونوروبنزوئیل استون و مشتقات هالوژنه توسط نظریه تابعی چگالی (DFT) و در سطح **O++B3LYP/6-31L انجام شد. در این مولکولها، تنها دو فرم سیس-انول کیلیتی وجود دارند که قادر به تشکیل پیوند هیدروژنی درونمولکولیO...H-O اند، که با یکدیگر در حال تعادلاند. محاسبات ما نشان می دهند که اختلاف بین این دو فرم در مولکولهای پارا-هالوتریفلونوروبنزوئیل استون حدود ۵۷/۰-۱/۴۹ کیلوکالری بر مول است، که نشان مان است که هر دو فرم می تواند در نمونه وجود داشته باشد. قدرت پیوند هیدروژنی نیز برای صورتبندیهای انولی پایدار این مولکول هاتوسط نرم افزار AII محاسبه شده و به همراه پارامترهای دیگر مرتبط با قدرت پیوند هیدروژنی نیز برای صورتبندیهای انولی پایدار این مولکول با یکدیگر مقایسه شدند. مطابق با نتایج حاصله در مولکولهای پارا-هالوژنه تری فلوئوروبنزوئیل استون قدرت پیوند هیدروژنی از مول می و طیف بینی، در فرم ۲ بیشتر از فرم ۴ است. مقایسه این نتایج نیز نشان می دهند که استخلافهای کلر، فلوئور و برم در موقعیت پارا حقه فنیل، بر ساختار و قدرت پیوند هیدروژنی درونمولکولی تاثیر مهمی ندارد اما می تواند سبب جابجایی نوارهای ار تعاشی حلو شود.

واژه های کلیدی: پیوند هیدروژنی درون مولکولی، اثر استخلاف، نظریه تابعی چگال (DFT)، انتسابات ارتعاشی.

۱. مقدمه

در یک بتا دیکتون تعادل دو شکل کتو و انول با انتقال پروتون همراه است. شکل انول توسط پیوند هیدروژنی درون مولکولی پایدار میشود. با توجه به شرایط محیطی از قبیل دما و قطبیت حلال و پارامترهای موثر بر خواص الکترونی حلقه کیلیت که ناشی از خصوصیات الکترونکشندگی و دهندگی استخلافهای مختلف در موقعیتهای آلفا و بتا است، تعادل انول-کتو و

تلفن: ۵۱۳۷۳۳۶۹۳۰ پست الکترونیک: vahidrezadarugar@mail.um.ac.ir

^{*}عهده دار مکاتبات: وحیدرضا دارو گر

نشانی:گروه شیمی، دانشکده علوم پایه، دانشگاه فردوسی مشهد، مشهد، ایران

قدرت پیوند هیدروژنی تحت تاثیر قرار می گیرد[۵–۱]. مطالعات تجربی متعددی نشان داده اند که گروه های الکترون کشنده مثل تری فلورومتیل (CF₃)، در موقعیت بتا پیوند را ضعیف کرده در حالیکه گروه های تأمین کننده الکترون مثل فنیل (C₆H₅)، قدرت پیوند هیدروژنی را افزایش داده اند[۷–۶].

هدف این مقاله، بررسی تاثیر استخلاف های هالوژن در موقعیت پارا حلقه فنیل بر پایداری، انرژی های نسبی فرم های سیس-انول مولکول تری فلوئوروبنزوئیل استون (به عنوان β-دی کتون های نامتقارن) به کمک نظریه تابعی چگالی(DFT) و روش های تجربی از قبیل طیف سنجی ارتعاشی می باشد. نتایج نظری و تجربی بدست آمده با مولکول ۴،۴،۴،-تری فلوئورو ۱-فنیل-۱و۳-بوتان دی اون^۱ (تری فلوئورو بنزوئیل استون) به عنوان مولکول مادر، نیز مقایسه شده اند. این مقایسه اثر استخلاف های کلر، فلوئور و برم در موقعیت پارای حلقه فنیل را بر پایداری بین دو فرم و قدرت پیوند هیدروژنی و نوارهای ارتعاشی آنها نشان میدهد.

۲. روشهای محاسباتی و تجربی

تمام محاسبات برای بدست آوردن ساختار مولکولی، قدرت پیوند هیدروژنی و انرژی های نقطه صفر (ZPE) و فرکانسهای ارتعاشی با نرم افزار گوسین ۹۹[۸] در سطح محاسباتی **G++B3LYP/6-311 [۹] در فاز گازی انجام شدهاند. ترکیب تری فلوئورو بنزوئیل استون از شرکت آلفا ایسر و مشتقات استخلاف دار آن (کلر، فلوئور، برم) از شرکت سیگما آلدریچ خریداری شده اند. طیف مادون قرمز (IR) در ناحیه ۸۰۰–۱۷۰۰، با استقاده از دستگاه تبدیل فوریه ۲۵۴–MB در حلال پریداری شده اند. طیف مادون قرمز (IR) در ناحیه ۸۰۰–۱۷۰۰، با استقاده از دستگاه تبدیل فوریه ۲۵۴–MB در حلال پریداری به قدرت تفکیک ^۱-mm MB و میانگین ۲۰ اسکن تهیه شده است. طیفهای رامان با استفاده از دستگاه از دستگاه بری پریداری مقسم نور Safe و آشکارساز IngaAs با روش الکتریکی تهیه گردید. نورهای رایلی توسط دو مجموعه از فیلترهای دوتایی مقسم نور Safe و آشکارساز IngaAs با قدرت تفکیک ^۱-m ۲۰ و ۲۰۰۰ اسکن به دست آمده است. منبع تغذیه لیزر Nd-YAG (m) مولو گرافی انجام گرفت. طیفها با قدرت تفکیک ^۱-۱۰۰ با در ۲۰۰۰ اسکن به دست آمده است. منبع تغذیه لیزر SAG-۲۰۰۰ اسک

۳. نتایج و تجزیه تحلیل داده ها

دو فرم سیس-انول در ترکیب هایX-TFBA که توسط پیوند هیدروژنی درون مولکولی پایدار میگردد در شکل۱ نشان داده شده اند. همان طورکه ملاحظه میشود بین این دوفرم، پروتون انولی از یک اتم اکسیژن به اتم اکسیژن دیگر منتقل میگردد.

X=H, F, Cl, Br شکل۱. تعادل بین دو فرم سیس-انول در تر کیبات استخلافی پارا تری فلوئورو بنزوئیل استون.

¹4,4,4-Trifluouro-1-phenyl-1,3-butanedione(TFBA)

فرمهای پایدار سیس ⊣نول مولکولهای X-TFBA محاسبهشده در سطح کوانتومیB3LYP با مجموعه پایه**G++11+6، درشکل ۲ نشان داده شدهاند. طبق نامگذاری، برای مولکولهای دارای گروه CF₃، کتابت این گروه درصورتبندی های۲ نزدیک گروه کربونیل و در صورتبندیهای ۴ نزدیک گروه هیدروکسیل درنظر گرفته شده است.

cis-enol-2

cis-enol-4

شکل۲. پایدارترین صورتبندی های سیس انول ترکیب TFBA

در جدول ۱ انرژیهای نسبی و انرژیهای نقطه صفر فرم ناپایدار در مقایسه با پایدارترین فرم، در فاز گازی و محلول در حلالهای قطبی و غیرقطبی، نشان داده شده است. در مولکولهای X-TFBA فرم ۴ پایدارترین فرم است که انرژی آن صفر منظور شده است، این جدول نشان میدهد که اختلاف انرژی بین دو فرم در فازهای مورد مطالعه ناچیز میباشد. ضمناً از داده های جدول مذکور استنباط میشود که قراردادن استخلاف های هالوژن در موقعیت پارای حلقه فنیل ترکیبات مذکور، تأثیر قابل توجهی روی انرژی های نسبی کم این ترکیبات در هردو فاز گازی و محلول نداشته و در نتیجه وجود هر دو صورتبندی سیس- انول در این ترکیبات و مشتقات استخلافي آن ها به طور همزمان، در هر دو فاز گازي و محلول در نمونه تأييد مي شود[١٠].

	فاز گاز		تترا کلرید کربن		ستونيتريل	,1	اتانول	
	۲	٤	۲	٤	۲	٤	۲	٤
TFBA	٠/ ٩٩(-/٨٩)	•/•	١/٢٣(١/١٥)	•/•	١/٤٩(١/٣٥)	•/•	1/88(1/84)	•/•
Cl-TFBA	•/YY(•/۶٩)	•/•	١/-١(-/٩٥)	•/•	1/8-(1/19)	•/•	1/29(1/2-)	*/*
F-TFBA	-/Y٩(-/YY)	•/•	۱/-۶(-/۹۶)	•/•	١/٣٩(١/١٨)	•/•	١/٣٧(١/١٨)	*/*
Br-TFBA	-/YO(-/FY)	•/•	١/(-/٩١)	•/•	1/21(1/22)	•/•	1/29(1/22)	•/•

جدول ۱. انرژی های نسبی و انرژی های نقطه صفر هردو صورتبندی سیس-انول برای تمام مشتقات استخلافی ترکیبات X-TFBA در فاز گازی و محلول.

انرژی نقطه صفر داخل پرانتز (ZPE).

مقایسه طول C-CH3در مولکول BA با طول C-CF3 در مولکول TFBA نشان می دهد که به دلیل اثر الکترون کشندگی اتمهایF، در استخلاف CF3، طول پیوند C-CF3 در مقایسه با طول پیوند C-CH3، افزایش یافته است. این اثر الکترون کشندگی، باعث مثبت تر شدن بار اتم کربن گروه CF3، نسبت به گروه CH3 می شود ودر نتیجه آن جاذبه C^{-C+δ}-C^{-δ} در C^{+δ}-C^{+δ} به دافعه C^{+δ}-C^{+δ} در CF3 در C^{+δ}-C^{+δ} غالب می شود و در نتیجه طول آن پیوند C-C افزایش می یابد. ضمناً نتایج گزارش شده نشان می دهند که قدرت پیوند هیدروژنی در ترکیب TFBA و مشتقات آن نسبت به ترکیب BA و مشتقات آن کاهش مییابد در حالیکه افزایش حجم انولی ترکیب TFBA و مشتقات آن در مقایسه با ترکیب BA و مشتقات آن دیده می شود. هم چنین آنالیز نتایج ساختاری و توپولوژیکی نشان میدهد که قرار دادن استخلافهای هالوژنه از قبیل F، CI و Br تأثیر قابل توجهی بر روی قدرت پیوند هیدروژنی ترکیب تری فلوئوروبنزوئیل استون ندارد[۱۰و۷–۶].

1-۳. تجزیه تحلیل طیف ارتعاشی

به منظور انجام بررسی دقیق تر نسبت دادن نوارهای مرتبط با پیوند هیدروژنی، فرکانس های ارتعاشی طیف IR، فرم های-X B3LYP/6-311++G* و نیز ترکیب دئوتره شده متناظر D2-X-TFBA، که (X=Cl) در سطح نظری **G+++IF-6-311 صورت گرفته است که سطح بسیار خوبی برای مولکول تری فلوئوروبنزوئیل استون گزارش شده است[۰۱و۶]. انتساب اعداد موجی محاسبه شده به شیوه های نرمال ارتعاشی توسط برنامه پویانمایی از نرم افزار 5.0 GaussView که برای برنامه گوسین است استفاده شده است، که ارائه دهنده بصری از شکل شیوه های نرمال ارتعاشی است. طیفII و رامان تجربی و نوارهای وابسته به پیوند هیدروژنی مولکولهای هدف شامل Br-TFBA،CI-TFBA،CI-TFBA، و دئوتره ترکیب D2-CI-TFBA همه در محلول4013، در شکل های ۳، الی ۹ نشان داده شده اند. همچنین در جدول های ۲ الی ۵، فرکانس های ارتعاشی تجربی و محاسبه شده است الی میان از ترات استخلاف بر محلول ای مقادیر CI-15BA، ۲۰۲۵ محلول4014، در شکل های ۳، الی ۹ نشان داده شده اند. همچنین در جدول های ۲ الی ۵ فرکانس های ارتعاشی تجربی و محاسبه شده است الی میان ای میان ای مولکولهای های ای این از از ای ۲۰۵۵ مین است. طیف ای در میان تجربی و نوارهای وابسته به پیوند محلول4014، در شکل های ۳، الی ۹ نشان داده شده اند. همچنین در جدول های ۲ الی ۵ فرکانس های ارتعاشی تجربی و محاسبه شده محلول4014، در شکل های ۳، الی ۹ نشان داده شده اند. همچنین در جدول های ۲ الی ۵ فرکانس های ارتعاشی تجربی و محاسبه شده محاول-X-15BA، در سیستم های مورد مطالعه به دست آید.

۲-۱-۳. ناحیه Vc=o

طیفهای IR از مولکول های هدف در محلول4CCl محدوده^{-۱} ۸۰۰ ۲۰۰۰ در شکل ۳ مقایسه شده است. با توجه به این شکل، هیچ ارتعاش کششی نوار C = O در حدود ^۱ ۱۷۲۰ در ارتباط فرم کتو از مولکولهایX-TFBA وجود ندارد، که در تطابق عالی با نتایج طیف بینیHNMR^۱ است[۱۱]. همچنین طبق مطالعات نظری حجم کتو-انول ها، این بدان معنی است که تمام نمونه ها به طور کامل در فرم های انول هستند[۱۰].

شکل." طیفIR از ترکیباتX-TFBAدر ناحیه IV00 cm⁻¹ در حلال IR شکل.

0H-۱-۳. ناحیه کششی OH

موقعیت و شکل نوار کششی OH به شکل تابع انرژی پتانسیل در حرکت پروتون بستگی دارد. شکلهای سیس –انول β – دی کتونها نوار پهنی در ناحیه ۲۰۰۰۰ - ۲۰۰۰ در طیف IR را نشان می دهند که براثر دئو تره شدن پروتون انولی به نظر می رسد به عنوان یک نوار باریک تر جدید در ناحیه ۲۰۰۰ - ۲۵۰۰ در طیف IR را نشان می دهند که براثر دئو تره شدن پروتون انولی به نظر می رسد به عنوان در محلول C14 کنشان می دهد. با توجه به پهن بودن و جفت شدن با نوارهای ترکیبی و اور تون و از دست رفتن اشکال واقعی آنها، تعیین مرکز این نوارها دشوار است. طیف مادون قرمز مولکولهای ATFBA در محلول ۲۰۱۰ در ناحیه ۲۰۰۰ – ۲۰۰۰ یک نوار بسیار پهن در محدوده حدود ۲۰۰۰ - ۲۰۰۰ در ناشان می دهد (مشابه با ترکیب TFBA (۱۹۶۶)، ۲۳۰۰ در ناحیه ۲۰۰۰ – ۲۰۰۰ یک نوار بسیار پهن در محدوده حدود ۲۰۰۰ محدود آست که ۲۸۷۰ در ناحیه ۲۲۶۹۸ (۱۶)، ۲۲۵۰۰ در ناحیه ۲۰۰۰ ۲۰۹۲ (۱۶) در نوارها دشوار است. طیف مادون قرمز مولکولهای TFBA در محلول ۲۵۱۰ در ناحیه ۲۰۰۰ – ۲۰۰۰ یک نوار بسیار پهن در محدوده حدود ۲۰۰۰ ۲۰۰۰ در انشان می دهد (مشابه با ترکیب TFBA (۱۶)، ۲۰۰۰ ۲۰۰۰ در ناحیه ۲۰۰۰ ۲۰۹۲ (۱۶) در ناماع در نصف ارتفاع ۲۰۹۲ (۱۶) در توار است. در نصف ارتفاع ۲۲۹۸ (۱۶) در در دامی در در ناحیه ۲۵۰۰ در ناحیه ۲۹۹۲ (۲)، ۲۰۰۰ ۲۰۰۰ در ناحیه ۲۰۰۰ ۲۰۹۲ (۱۶) در در ترکیب ۲۰۰۰ ۲۰۹۲ (۱۶) در در ترکیب ۲۰۱۰ ۲۰۹۲ (۱۶) در در ترکی در ترکیب ۲۹۹۲ (۲)، است. در یاییه دئوتره کردن ترکیب ۲۰۹۰ ۲۰۹۲ می رسد (شکل ۵ را بیینید). که نشان می دهد نسبت نظری VOH/vOD برای مولکولهای ذکر شده ۱۰/۱۰ است. نسبت نظری VOH/vOD نیز با نسبت تجربی آن ساز گار است. این ۲۰۱۹ ذکر شده وجود ندارد[۱۰].

شکل ٤. طيف IR ترکيبات X-TFBA در ناحيه vOH

T-T. ناحیه خمش داخل و خارج از صفحه OH

طیف مادون قرمز (RI) تر کیبات CI-TFBA/D2-CI-TFBA در محلول ۲Cl در منطقه ۲۰۳۰ مند در شکل ۶، با نگاه ویژه به ارتعاش خمش خارج از صفحه (γOH) و داخل صفحه (δOH) نشان داده شده است. برای مقایسه بیشتر، فرکانس ارتعاشی تئوری و تجربی حرکات خمشی خارج از صفحه (اغلب با پهنای نوار) برای مولکول های مورد مطالعه نیز در جداول ۲ و ۳ ذکر شده است. با افزایش قدرت پیوند هیدروژنی، رزونانس در حلقه کی لیت بیشتر می شود و فرکانس های خمش OH به سمت مقادیر بالاتر جابجا می شوند. با مقایسه فرکانس های نظری و تجربی QOH، مجدداً تأکید می شود که اختلاف قابل توجهی بین قدرت پیوند هیدروژنی ترکیبات مورد مطالعه وجود ندارد. اگر چه AOH می تواند یک معار برای تعیین قدرت پیوند هیدروژنی در ترکیبات β دی کتون باشد، اما این ارتعاش به اندازه OH/OD و QOH/OD به طور محض در ارتباط با قدرت پیوند هیدروژنی نیست. این بدان معنی است که این حرکت ارتعاشی اغلب به برخی شیوه های دیگر مثل C-V، C-V، تغییر شکل ⁶۶ و شیوه های حلقه فنیل معنی است که این حرکت ارتعاشی اغلب به برخی شیوه های دیگر مثل C-V، C-V، تغییر شکل ⁶۶ و شیوه های حلقه فنیل معنی است که این ارتعاش به اندازه OH/OD و OH/OD به طور محض در ارتباط با قدرت پیوند هیدروژنی نیست. این بدان معنی است که این حرکت ارتعاشی اغلب به برخی شیوه های دیگر مثل C-V، C-V، تغییر شکل ⁶۶ و شیوه های حلقه فنیل روره های استخلافی بسیار حساس است. مبنا گرفتن این حرکات، انتخاب مناسبی برای مقایسه قدرت های پیوند هیدروژنی نیست. در مورد ADH/OD، همانطور که در شکل ۶ نشان داده شده است، نوار قوی و نسبتا گسترده ای در حدود ^۲OH/OH به حرکت می هود که به ADG نسبت داده می شود. این تغیرات فرکانس با نتایج محاسبات ATD همخوانی بسیار خوبی دارد[۱۰].

شكل٦. طيف هاىCl-TFBA ، IR وD2-Cl-TFBA در ناحيه ٥٠٠- ١٢٠٠ دم

۳-۳. تفسیر انتسابات طیف های ارتعاشی

انتساب فرکانس های محاسباتی بر اساس فرکانس های نوارهای مشاهده شده و تغییرات شدت در طیف رامان و مادون قرمز ترکیبات و گونه دئوتره شده انجام شد و با ایجاد یک همبستگی یک به یک بین فرکانس های مشاهده شده و نظری تایید گردید. در مطالعه حاضر ما یک تحلیل فرکانس های محاسباتی برای به دست آوردن اطلاعات طیفی از F-TFBA ،CI-TFBA و -G TFBA حاضر ما یک تحلیل فرکانس های محاسباتی برای به دست آوردن اطلاعات طیفی از Br-TFBA دارای ۶۰ شیوه مطالعه حاضر ما یک تحلیل فرکانس های محاسباتی برای به دست آوردن اطلاعات طیفی از Br-TFBA دارای ۶۰ شیوه مرا از تعاشی هستند. طیف های ارتعاشی IR تجربی این ترکیباتCI-TFBA ما CI-TFBA در شکل ۳ در فاز محلول ۲CL نرمال ارتعاشی هستند. طیف های ارتعاشی IR تجربی این ترکیباتCI-TFBA ما CI-TFBA در شکل ۳ در فاز محلول با نشان داده شده است. انتسابات برای مدهای ارتعاشی حلقه فنیل طبق نمادگذاری ویلسون^۲ انجام شده است[۲۲]. محاسبات اعداد موجی معمولا بالاتر از مقادیر تجربی مربوطه است، که به علت ترکیب شدن اثرات همبستگی الکترون و کمبودهای مجموعه های پایه است. علاوه بر این، اختلاف بین فرکانس های محاسبه شده و تجربی ممکن است به علت بسیاری از عوامل مختلف مانند اثرات موجی میش در زونانس فرمی، اثرات حلال و غیره باشد که معمولا در نظر گرفته نمی شود. سطح **BH-118-6-20 میک 9-3 در نظر گرفته شده است.

۲۹۰۰ cm⁻¹. ناحیه ارتعاشات بالای ۲۹۰۰

ساختار ترکیبات آروماتیک آلی ارتعاش کشش نامتقارن C-H را در ناحیه ۳۰۰۰ –۳۱۰۰ نشان می دهند، که ناحیه منحصر بفردی برای تشخیص ارتعاش کششی C-H است. در مولکول های مذکور چهار نوار درحدود نواحی ۳۱۲۰، ۳۰۸۰، ۳۰۷۰ و ۳۰۵۰

`Wilson

عدد موجی دیده می شوند که به ارتعاشات کششیC-H نسبت داده می شود. ارتعاشات C-H محاسبه شده با سطح-B3LYP/6 **G*++G* توافق خوبی با طیف ثبت شده و همچنین داده های ارائه شده نشان می دهد. پس از دئوتره شدن، نوار ضعیف در cm⁻¹ ۳۱۲۰ ناپدید می شود و یک نوار جدید در ۲۳۲۰cm⁻¹ ظاهر می شود که می تواند به کشش CDα نسبت داده شود. این با نتایج محاسبه شده است سازگاری دارد که بالاترین فرکانس ها را به این حرکت ارتعاشی اختصاص می دهد. در ترکیبات مونو-جانشین شده بنزن، انتظار می رود شیوه های ارتعاشی ۲۰ ۷۵٬۲۰۹ و ۲۰۱۵در ناحیه ¹⁻۳۰۰ هده می تواند به می موند. با در ترکیبات مونو-جانشین محاسبه شده بنزن، انتظار می رود شیوه های ارتعاشی ۲۰ ۷۵٬۲۰۹ و ۲۰۱۵ در ناحیه ¹⁻

۲-۳-۳. ناحیه ۲-۳-۳.

در این ناحیه ما انتظار داریم که فرکانس های نوارهای مربوط به کشش C-C، C=C، C-O و خمش داخل صفحهCH و حركات كششCF3 وC-C و خمش خارج از صفحه C-H از گروه فنیل را در انعطاف یذیری حلقه انولی مشاهده كنیم. طیف های جدا نمایی شده IR ترکیبات D2-CI-TFBA،CI-TFBA و F-TFBA درناحیه ۸۰۰ m-۱۷۰۰ در شکل های ۳ و ۵ به ترتيب نشان داده شده است. طيف هاي رامانF-TFBA ، CI-TFBA ، در ناحيه ۲۰۰۰-۲۰۰cm در شكل هاي ۷ الي ۹ به نمایش گذاشته شده است. انتساب ها بر اساس ایجاد یک همبستگی یک به یک بین فرکانس ها و شدت های مشاهده شده و نظری انجام شده اند. انتساب فرکانس های ارتعاشی هماهنگ و ناهماهنگ محاسبه شده، شدت های مادون قرمز (IR) و فعالیت های رامان (F-TFBA ، D2-CI-TFBA ، CI-TFBA (AR)، و Br-TFBA درسطح #B3LYP/6-311++G* در جداول ۲، ۳، ۴ و ۵ نشان داده شده است و با فرکانس های مشاهده شده مقایسه می شوند. جدول ۲ نشان می دهد که فرکانس های محاسبه شده در توافق خوبی با نتایج تجربی هستند. طیف های IR، TFBA، IR و چندینβ–دی کتون دیگر [۷–۵ و۱] تنها یک نوار وسیع را در ناحیه C=O و C=C نشان می دهند. این نوار در طیف محلول Cl-TFBA ،CCl4، و F-TFBA درحدود F-t cm⁻¹ظاهر می شود. طیف مادون قرمز Cl-TFBA و F-TFBA در محدوده این ناحیه پنج نوار در حدود ۱۹۴۰، ۱۹۰۰، ۱۵۹۰، ۱۵۸۰ و ۱۵۶۵ عدد موجی را نشان می دهند. دو نوار قوی در حدود⁻¹۱۹۴۰ و ۱۹۴۷بهvaC=C-C=O مربوط است که با δCHα و δOH جفت شده است. پس از دئوتره شدن، به طور نمونه در ترکیب Cl-TFBA، این نوارها به ترتیب به ۱۹۴۵ و ۱۴۲۵ عددموجی تغییر می کند. این به دلیل جفت شدنvaC=C-C=O با δOH و δOH است. نوار متناظر در TFBA در ۱۹۳۵ cm⁻¹ظاهر می شود[۶]. بنابراین، به نظر می رسد که این شیوه ارتعاشی به شدت تحت تأثیر ماهیت گروه های پایانی قرار داشته باشد. این دو نوار نشان دهنده وجود دو تاتومر در نمونه است. با مقایسه شدت های رامان و IR محاسبه شده و تجربی، نوارهای طیفیIR، در حدود Iav، cm⁻¹ و ۱۵۶۰ به حرکت ۸b حلقه فنيل برايX-TFBA-4 و X-TFBA-2 نسبت داده مي شوند. اين نوارها به برخي از ارتعاشات حلقه انول، مانند حركت كششي C=O و δOH جفت شده است. برپایه دئوتره شدن به طور نمونه در ترکیب Cl-TFBA، این نوارها به ترتیب به L۵۷۴ cm⁻¹ و ۱۵۹۵ جابجا می شوند. طیفIR از Cl-TFBA و F-TFBA، حضور دو نوار در حدود ۱۴۷۰ cm⁻¹ و ۱۴۵۵را نشان می دهند. براثر دئوتره

شدن به طور نمونه در ترکیب CI-TFBA، این نوارها ناپدید می شوند و دو نوار جدید در ¹-۱۴۸۵cm و ۱۴۸۵cm طاهر می شوند که بر اساس محاسبات این نوارها به CI-TFBA، این نوارها ناپدید می شوند و دو نوار جدید در X-TFBA و X-TFBA د نسبت داده می شوند. نوار طیفی پهن در ناحیه Inx، cm⁻¹ در طیف مادون قرمز D2-CI-TFBA، برای VO-C=C-C+ و vaO-C=C-C+ و دو حرکت ارتعاشی حلقه فنیل جفت است. نوار متناظر برای TFBA در Ins, rm⁻¹ مشاهده شد که اثر استخلاف در موقعیت پارا حلقه فنیل را نشان می دهد[۷] شیوه های ارتعاشی HT4C-C+vC-c+ و OC-CF3 و حرکت ۱۴، در حدود ناحیه Inter الت جامد و مرکت در موقعیت یارا مشاهده شد. نوار متناظر برای TFBA در Ins, rm⁻¹ مشاهده شد که اثر استخلاف در موقعیت پارا مشاهد می از نشان می دهد[۷] شیوه های ارتعاشی HT4C-C+vC-c+vC-c+vC-ch3 و حرکت ۱۰، در حدود ناحیه Inter در الت مشاهده می از می دولا مشاهده شد. نوارهای ضعیف در Inter cm⁻¹ و Inter در طیف IR دئوتره شده ADC-C+C-C+C- مشاهده

۳-۳-۳. ناحیه زیر ۲-۳-۳

در این ناحیه، ما انتظار داریم که فرکانس های ارتعاشی خمش داخل و خارج از صفحه C-CF₃، خمش خارج از صفحه O-H و -C H، و حرکات و خمش های داخل و خارج از صفحه حلقه های فنیل و کی لیت شده و پیوند C-X را مشاهده کنیم. نوار متوسط و پهن در حدود¹⁻ ۸۸۸cm با نوارهای تئوری در حدود ¹⁻ ۹۲۰ م۲۰ همبستگی دارد، که عمدتاً مشخص کننده خمش خارج از صفحه -O H است. پس از دئوتره شدن به طور نمونه ترکیب C-TFBA همبستگی دارد، که عمدتاً مشخص کننده خمش خارج از صفحه -O H است. پس از دئوتره شدن به طور نمونه ترکیبCHA همبستگی دارد، که عمدتاً مشخص کننده خمش خارج از صفحه -O می رسد که با OO جفت شده است. هر CHα در طیف های جامد IR، C-TFBA و F-TFBA در حدود ¹⁻ Δ۰ م طاهر می شود که پس ازدئوتره شدن به طور نمونه C-TFBA در طیف های جامد IR، C-TFBA در حدود ¹⁻ C-C dاهر می شود که پس ازدئوتره شدن به طور نمونه C-TFBA در طیف های جامد IP در مده م می در در م

شکل ۲. طیف رامان Cl-TFBA در فاز جامد در ناحیه ۲۰۰-۱۷۰۰cm

شکل ۹. طیف رامان Br-TFBA در فاز جامد در ناحیه ۲۰۰-۱۷۰۰cm¹

٤. نتيجه گيري

اختلاف کم انرژیهای نسبی محاسباتی برای صورتبندی های پایدارسیس-انولی مولکولهای X-TFBA، می تواند احتمال حضور همزمان آنها در نمونه ترکیبات مورد بررسی را تأیید نماید. بررسی ساختارهندسی صورتبندی های مختلف نشان دهنده اثر الکترون کشندگی قابل ملاحظه گروه CF3، بر روی ساختار، عدم استقرار الکترونی و پیوند هیدروژنی درون مولکولی آنها است. این اثر باعث کاهش قدرت پیوند هیدروژنی درون مولکولی بوده و نتایج تجربی حاصل از طیف سنجی HNMR^۱، تائید کننده قدرت پیوند هیدروژنی ترکیبات مورد بررسی است. همچنین مقایسه بین صورتبندی های ۲ و ۴ در مولکولهای ATFBA با تائید کننده قدرت پیوند صورتبندی۴ در فاز گازی و محلول پایدارتر است که نتایج جالبی را در مورد اثر الکترون کشندگی این گروه در موقعیت β بر ساختار و قدرت پیوند هیدروژنی درون مولکولی-β دی کتون ها نشان می دهد. استخلاف های کلر، فلوئور و برم در موقعیت β بر ساختار و قدرت پیوند هیدروژنی درون مولکولی-β دی کتون ها نشان می دهد. استخلاف های کلر، فلوئور و برم در موقعیت پارا حلقه فنیل اثر مهمی بر قدرت پیوند هیدروژنی درون مولکولی ندارند اما سبب جابجایی نوارهای ارتعاشی مربوط به حلقه فنیل می شوند.

داروگر و همکاران

سال نهم، شماره ۲۹، بهار ۱۳۹۸

برحسب ¹⁻ cm)	'-Cl (فر کانس	های اصلی۲FBA	جدول۲. انتسابات نوار،	-
-------------------------	---------------	--------------	-----------------------	---

				•		U			
تئورى			تئورى				تجربى		انتسابات
Cl-TFBA-2	I.IR	A.R	Cl-TFBA-4	I.IR	A.R	IR(Solid)	IR(CCl ₄)	R(Solid)	
<u> </u>	١	٤٢	۳۲۶۳	٣	۳۵	۳۱۱۹	6717	۳۱۲۰	νCHα
۳۲۱ -	۲	۲	2417	١	111	۳.71	۳۰۹۲	۳.81	2
۳۲۰۹	۲	۱۸	۳۲۰۹	١	٨٠	۳.71	۳۰۷۵	۳.81	20b
۳۱۹۲	•	۶٨	۳۲۰۰	•	٨.			۳۰۶۹	20a
۳۱۹٤	٣	۲۱	8919	۲	48	۳۰٤۶	۳۰٤۰	۳۰۵۰	7b
۳۰۵۰	٣٧٣	18.	ም - ሃ ም	۳٤۲	9		471.		νОН
			1888	۱۵۲	۲۱		1889	1878	va C=C-C=O+δCH+8b
1881	040	۳٨					1889	1878	va C=C-C=O+δCH+δOH+8b
1880	195	۳۶	1884	٤٤	۱۲۹	1090	18	109.	vs C=C-C=O+δOH+8b
1848	١٢٤	898	1844	٨٤٦	١٤١٢	1051	۱۵۹۸	109.	8a, δOH, νC=O
			۱۵۹۹	٢۶	۲۲		ιδλλ	1979	8b+δCH
1092	١٢٢	•				1040	1058		8b+νC=O+δOH
1042	۱۲	18	1961	۲۵	20	1891	١٤٩٠	١٤٩٠	19a
1889	۳۳	•	۱۶۷۱	405	٣٤	1890	١٤үү		$\delta CH\alpha + \delta OH + va C-C=C-O+19b$
۱٤٣۰	٤٢	•	١٤٣٣	۲X	١	1890	١٤٤٥		19а, и О-С=С, бОН
۱۳۸۱	۲٨	757	1888	٤٩	٥γ	۱۳٤۰	186.	۱۳٤۶	δOH+vaC-C=C-O+3
							181.		Combination?
ነኖሞነ	۲۲	۳٨	۱۳۲۱	٤٤	٨١	1481	1277		14+бОН
١٣٢٤	٤	٣	۱۳۳۱	•	٣	۱۳۰۷	1292	1299	3
١٢٩٤	٨٩٥	181	١٣٠٤	٤٢١	۶እእ	١٢٤٧	1790	۱۲۲۰	$\delta OH+\nu C-CF_3+\nu C-C+\nu C-ph$
1492	99	١١٢	1494	١٠٨	١٤٩		١٢٤٥	۱۲٤٨	δCH+vC-CF ₃
۱۲۰۵	60	48	וואו	٤٩	۹۱	١١٧٨	14.8	۱۲۰٤	9a
1171	የሃአ	٤	1184	үбү	١	14.4	1184	١١٢٢	vaCF ₃
1180	77	۱۹	١١٤٢	٣٠	٣				9b
1188	۳۰۹	٤	١١٤٩	۳۰۱	٣	١١٥٤	1177		vaCF ₃
1170	54	٨	١١٢٩	177	۲	1175	11.0	זזוו	$18b+\delta CH\alpha+\nu sCF_3+\nu C-O$
11-7	۱۳۲	Y۵	11-8	۹۱	۱۲۸	1.9.	١٠٩٤	1.92	18b
۱ - ۶۸	٣٤	•	1.41	١٩٤	١٤	۱.۶۲	1.58	۱۰۶۰	$18a+\nu$ C-C+ ν CF ₃ + δ CH
۱۰۲۸	۵٤	۱	۱ - ۲۸	۳۵	۱٠	1.18	1.18	۱۰۱۰	12
۲ - ۱	•	•	٩٩٣	•	-				5
ঀ৾৾৵ঀ	•	•	۹۷۱	•	-				17a
۹۲۸	۱.	۲۱	٩٣٥	۲.	۳۳	٨٩٨	٨٩٣	۹۱۵	δССС
٩٢٧	۶۳	•	٩١٩	Y١	-	٨٩٨	٨٨٧		γОН
λ۶۶	۱۳	· ·	٨٥٩	۲۱	١	۲٤۲	٨٤٥	٨٤٠	10a
٨٣٤	4	•	٨٣٤	٨	•	۲۲۷	٨٣١		10b
٨٢٣	٨٥	١	٨١١	Υ٤	١	۲۱۲			γCHα+10a
٨١٢	۳۲	۲	۷۱۰	۳۹	٥	γ٩٨	۸۱۰	٨٠٠	$1+\Delta+\nu C-CF_3+\nu sCF_3$
364	•	•	Yor	٥	۱	۷۵۰			γCHα
Υ٤٤	γ	۲۰	үүү	۲۲	۱۳	የምሃ	۷۱۵	۲۳۰	$1+\Delta+\delta sCF_3$

مجله شیمی کوانتومی و اسپکتروسکوپی

үүд	١	•	Υ٤١	•	-				11+γCHα
۶۹٤	٥	۱	۶۸۳	۲	١	۶۳۰	۶۷۲	888	4
770	۳۶	۲	۶۷۳	75	٤	۶۲.	<i>7</i> 70		$\Delta + \delta CF_3 + 6b + \nu C - Cl$
۶٤٣	١	9	9EE	١	γ		529	844	6b
۵۲۹	γ	١				۵۸٤	٥γ.	٥٧٧	$\delta a CF_3 + \Delta$
			۵۷۲	11	٢	٥٤٩	٥γ٠	٥٧٧	$\delta a CF_3 + \Delta$
636	٤١	γ					٥٢٢	۵۲۸	15+νC-Cl+δC-C=O
			577	٢٤	١	577		٥٢٨	15+νC-Cl+δC-C-O
015	-	۲	٥١٤	•	١			٥١٢	δaCF ₃
٤٨٩	١٢	•	٤٩٠	18	-	٤٢٩	٤۶۵		16b
γ۵3	١٢	۵	٤۶١	18	-	٤۵٩		۳۵٤	15+6С-С=О+6С-С-О
٤١٨	١	٣	٤٣٤	٩	١	٤٢٥	٤٢٥	٤٢٠	υΟΟ+ρCF ₃
٤١٥	-	•	٤١٤	•	-				16a
Хоч	٣	۲	۳۵۱	۲	۱	୯୦୦	٣٤٩	۳٤۵	νΟΟ+δC-Cl+15
۳۳۱	٤	٤	ፖፖሃ	٣	١	۳۲۸	۳۲۵	۳۱۵	Δ
۳۱۲	•	١	۳ - ۳	•	۱			۳	$\Gamma + \pi CF_3$
۲۷٤	•	۱	۲۷۵	١	۱	449			$\Gamma + \pi CF_3$
γуγ	١	١	۲۹.	۲	٢	ΥΥΥ		۲۲۰	δC - $Cl+\Delta+\rho CF_3$
۲۷٤	•	١	۲۷۵	١	۱	۲۷٤		410	10b+Γ
717	٤	۱	۲۱۳	١	۶	411		۲-۳	Δ
١٨٢	۲	•	۱۸۵	١	۱	۱۸٤		۱۲۵	15+δC-CF ₃
140	١	•	١٤٣	•	•	۱۳۰			Г
177	۲	۱	۱۰۰	١	۲				γCCC
Υ٤	-	۱	Y۵	١	١				Δ
۶۱	۱	•	۵۹	۲					γCph
۲۶		١	٤	•	۱				τCF ₃
۱۸		٤	١٤	-	٤				τph

۲۹۲ IR: مادون قرمز، R: رامان، ۷: کشش، δ: خمش داخل صفحه، γ: خمش خارج از صفحه، Δ: حرکات داخل از صفحه حلقه، Γ: حرکات خارج از صفحه حلقه، ت: پیچش، φ: حرکت گهواره ای داخل از صفحه، π: حرکت گهواره ای خارج از صفحه. I.I: شدت مادون قرمز برحسب I.R، KM/Mole، فعالیت پراکندگی رامان برحسب A⁴/AMU.

(cm ⁻¹	، برحسب ^ا	فر کانس) D ₂ -Cl-	TFBA	ہای اصلے	ت نواره	۳. انتساباد	جدول
-------------------	----------------------	---------	------------------------------	------	----------	---------	-------------	------

تئورى			تئورى			تجربى	انتسابات
D ₂ -Cl-TFBA-2	I.IR	A.R	D ₂ -Cl-TFBA-4	I.IR	A.R	IR(CCl ₄)	
۳۲۱۱	٢	۲۲۳	۳۲۱۲	١	١١٣	۳.91	2
۳۲ - ۹	٣	γ	۳۲۱ -	١	٨۶	۳.91	20b
۳۱۹۸		Y١	۳۲۰۰	•	٨.		20a
۳۱۹۵	٣	١٩	۳۱۹۵	۲	48	۳۰۶۵	7b
۲٤۱۰	٣	11	۲٤۱۰	٤	۱.	5777	vCD
үүүх	۲٤١	٤٩	۲۲٤٩	۲۷۲	٨	۲۰۹۵	vOD
1888	368	١	1808	۱۵۹	۲۳	1980	va C=C−C=O+8b
1844	үүү	٤٤٩	188.	188	٨٨٣	۱۵۹۲	8a

٦٤

٦٥

سال نهم، شماره ۲۹، بهار ۱۳۹۸

داروگر و همکاران

			18	٤٢	٩٤	۱۵۲٤	8b+vC=O
18-0	۹.	٤٦				1090	8b+vC=C
			1361	٥٤٥	Y۵۹	1045	vs C=C-C=O+19a+δOD
1058	9.	690				1041	vs C=C-C=O+19a+δOD
104.	٩	۳۸	1011	702	۱۳۰	١٤٨٥	19a+vsC=C-C=O
۱٤٣٠	۲۳	54	1881	٤١	۱.	١٤٢٥	19b+vaC-C=C-O
١٤٢١	48	۱۳	ነሥአү	۲۵	γ	1471	va O-C=C-C+3+14+0C-CF ₃
۱۳۳۵	۲۱۰	77	1411	٤٢	۵	1298	14
١٣٢٤	٤	٣	۱۳۲۸	٢	٣	1810	3
۱۳۰۹	802	٤۵	۱۳۶۸	٤٩	۵۹۳	1401	14+vC-CF ₃ +vaC-C-ph+δOD
۱۲۱۳	۱۹۵	75	١٢١٥	۳۱٨	۶	1175	9a+vC-CF ₃ +δCD+vC-C-ph
۱۲۰۵	18	44	זוזו	١	٥١	1184	9a
١١٢٤	۲٤٠	۵	1184	۲۷۹	٣	1172	va CF ₃ +9b
۱۱٤٣	٣٠٠	٤	١١٤٩	۲۹۳	٣	١٠٩٤	vs CF ₃
ነነምሃ	Y	٣	١١٤٢	11	٣	11-8	9b
1117	۹۱	٨.	ואוו	44	٥۶	۱ - ۸۶	δOD+18a+vs CF ₃
11-1	۲۳۸	۱۹۵	۱۱۰۳	۱۹۳	үрү	1.84	18b+δOD
۱۰۵۵	Y٤	۵	۱.۶.	171	١٨	۲۰٤۳	δOD+vs C-C-C+18a
۱۰۲۲	۶۲	٣	۱۰۲۸	۳-	٩	1-18	12
۱۰۰۲		•	۹۹۳	•			17a
959			۹۷۱	•			5
٩٠٢	۲۲	٣	٨٩٢	۲۱	٩	٨٢١	δCD+1+δOD
አዎ۹	11	11	٨٨٨	۲۸	۲۰	٨٨٣	δCD+δCCC+δOD
٨۶۶	18	-	٨٥٩	۲۲	١	٨٤٥	11
٨٣٤			ለ۳٣	١		۲۲۲	10a
γ٩٩	١٤	١	٨	٣.	٩		$1+\Delta+\nu C-CF_3+\nu s CF_3$
۲۹۲	Y١	١	Y٩ð	98	•	የଜዖ	11
٢٤١	٣	١	γεγ	١	۲	Υ٣٠	11+Γ
٢٤١	۵	١٩	٢٣٤	۳۱	11	۷۳۰	$1+vs CF_3+\Delta+vC-Cl$
۶۶۹	٤	١	598	۱۹	١	۶۲.	11+Γ
909	۳۷	١	99 Y	۲۲	٤	۶۳۰	$6b+\Delta+\delta sCF_3$
۶۲.	۱۸	•	<i>44</i> ·	٨	١	888	γOD+γCD
۶٤٣		γ	988	١	٨	۶۱۵	бb
٤٨٥	۱۵	١	۵۷۶	18	•	٥٨٠	γCD+γOD
۵۷۵	٨	١	۵۶۸	١.	٣	۵۲۶	$\Delta + \delta s C F_3$
136	٤١	4	٥١٣	70	١	٥٢٠	νC-Cl+Δ
٥١٢	١	۲	011	•	١	٥١٤	δaCF ₃
٤٨٨	۱۳	•	٤٨٩	۱۸	•	٤٧٩	δC-ph
٤٥٠	11	4	٤٥٤	۱۸	•	٤٤٦	15+δsCF ₃
٤١٤	•		٤١٤	•	•		16a
٤١٢	١	٣	٤٣٢	γ	١	٤٣٣	$\Delta + \delta s C F_3$
୯୦୪	۲	۲	۳٤٨	١			νΟΟ+15+ρCF ₃

سال نهم، شماره ۲۹، بهار ۱۳۹۸

مجله شیمی کوانتومی و اسپکتروسکوپی

۳۲۵	٤	٤	۳۲.	٣	١	۳۱۹	νOO+δs CF ₃
۳ - ۲		١	۲۹۹		١		$\Gamma + \pi CF_3$
777	١	١	۲۸۶	۲	١	۳۱۹	$vOO+\rho CF_3+\rho Cl+15$
የለሥ		١	642	١			γph+γC-CF ₃
۲۱۰	٤	١	717	۲	۵		$15+\Delta$
١٨٢	۲		١٨٤	١	۱		15+δC-CF ₃
١٢٤	١	١	181		-		γ C-CF ₃ + γ C-Cl
۱۱۸	١	١	۹۲	١	۲		γCCC
Υ٤	•	١	Υ٤	١	١		δC-ph
۶۱	١	-	δ٨	۲	-		γC-ph
١٩	•	١	٤	•	١		τCF_3
١٨	•	٤	١٤		٤		τph

زير جدول 2 را ببينيد.

جدول ٤. انتسابات نوارهای اصلیF-TFBA (فرکانس برحسب¹⁻cm)

تئورى			تئورى			تجربى			انتسابات
F-TFBA-2	I.IR	A.R	F-TFBA-4	I.IR	A.R	IR(Solid)	IR(CCl ₄)	R(Solid)	
8781	١	٤٢	۳۲۶۱	٣	۳۶	۳۱۱۹	۳۱۲۰	۳۱۲۰	νCHα
۳۲۱۱	٤	١٧٢	2412	۲	١٠٨	۳.γ٨	۳۰۹۰	۳۰۹۰	2
۳۲۰۹	١	٥.	۳۲۱۰	١	۱۰۳	۳.γ۸	۳۰۸۲	۳۰۹۰	20b
۳۱۹۸	•	۱۰۶	۳۲۰۰	•	۱۲۰			ም • ሃ۶	20a
8198	٤	۳۳	8190	٣	۳۶	۳۰٤۷	۳۰۵۳	۲۹۰۶۷	7b
۳۰٤۶	۳۶۵	۱۳۲	۳۰۷۱	۳۲۹	۶		27290		vOH
			1880	۱۵۲	18		1827	1849	va C=C-C=O+δCH+8b
1882	٤٣٣	٤٢					1827	1849	va C=C-C=O+δCH+δOH
1884	798	٣.	1588	٤٦	١٩٩	۱۵۹۸	18.8	1092	vs C=C-C=O+δOH+8b
1888	۲۳	۳۱.	1881	۶۰۳	۶۳٤	۱۵۲۹	۱۵۹۸	1092	8a, δOH, νC=O
			1814	205	191		۱۵۲۹	194.	8b+δCH
18.4	٥.	777				108.	1009	108.	8b+vC=O+δOH
۱۵۳۹	۳۶	۲۶	۱۵۳۸	۱۳۸	۳۵	191.	19-1	1018	19a
1871	٣٤	١	١٤٨٤	۲۲۳	۱۹	١٤٦٢	١٤٧٤		δCHα+δOH+va C-C=C-O+19b
۱٤٣٨	۳۲	١	188.	70	١	١٤٠٨	۱٤۵۰		19a+v О-С=С+бОН
1421	٩٩	۲۰٤	١٣٨٩	٤٣	٤٦		۱۳۲۱	1808	δOH+vaC-C=C-O+3
						1892	١٣٠٢		Combination?
۱۳٤٣	۳۸	۲۲	ነምምሃ	٣٤	۳٨	۱۳۰۰	1411	1444	14+бОН
١٣٢٤	٤٤	۱.	ነ۳۲۶	٣	۶	1812	1494	18	3
1290	٨٨٨	١٢٤	۱۳۰٤	٤٥٠	٥٣٠	1480	1750	١٢٤٩	$\delta OH+\nu C-CF_3+\nu C-C+\nu C-ph$
1491	۲۱	٣٤	178.	۱۳۰	۲۹	1177	1782	1448	δCH+9a
1494	191	۶۱	1708	۶۱	Y۵	141.	۱۲۰۵		9b+δCHα
١١٢٩	188	۲۱	۱۱۷۱	١٥٤	99	1177	۱۱۷۵	١١٨٢	9a
1171	۳۹۶	٤	1158	48.	١	1171	1109	١١٤٢	$\nu sCF_3 + \delta CH + \nu C - O + 18b$
١١٤٤	۳۱۰	٤	١١٤٨	۲۹۲	۲	1100	1119	1184	vaCF ₃

٦٦

٦	۷
•	

داروگر و همکاران

١١٣٩	٣٤	٩	۱۱٤۰	٨۶	٣	۱۰۷۲	11-1	۱۱۲۳	18b+oCHa+vsCF3+vC-O
١١١٩	۶۱	۲	١١٢٤	۱۰۲	٢	۱۰۷۲	۱۰۸۵	۱۰۷۵	18b+δCHα
1-88	١٤	۱۸	۱۰۸۳	189	١	1.8.	1.50	۱۰۵۲	$18a+vC-C+vsCF_3+\delta CH\alpha$
۱۰۲۸	11	-	۱۰۲۸	٥	•	1 - 17	1 - 18		12
۹۹۲			٩٨٩	•	•				5
۹۵۸	•	-	٩۶٤	•	•				17a
۹۲۸	۶۳	١	٩٣۶	٥.	١.	٨٩٠	۹۱۲	۹	δССС
۹۲۸	١.	۲۲	٩٣٤	٤٤	۲٤	٨٩٨	٨٨٩	۹۱۵	γOH+17b
٨٢١	۳۱	-	٨۶٢	۳۶	١	٨٥٩	٨٥٠	YQX	10a
٨٤٣	۲X	۲.	٨٤۶	۳۶	۳۲	۲۳۷	٨٣٩	٨٣٧	10b
۲۲۷	٤٣	-	۲۲۷	٩	•	λ۲۳	۸۱۶	۷۱۶	γCH+10b
٨٢٤	٤٠	-	٨١۶	99	١	٨٠٠		۷۱۷	γCH+10a
۲۹۱	١	١٤	Υ٨٠	•	٨			үүж	$1+\Delta+\nu C-CF_3+\nu sCF_3$
YDF	١	۲	Υ٤٤	•	٤	Υ٤٠		የሌለ	γCHα
үүү	١	١	YOO	٤	١		۶۹۸	598	γCHα+γC-O+4
۶۸۶	۲.	١	۲ - ۳	۲۸	٣	৮৭১	649		$\Delta + \delta s C F_3 + 6 b + \nu C - F$
891	۶	-	۶۸۳	٣	١	۶۲۲		۶۷۹	γC=O+4
۶٤۵	١	q	989	۱	γ	۶۳۳		۶۳۰	6b
۶-٤	54	٤	δλγ	40	•	۵۹٤	۵۹٤	696	ба
۵۷۷	17	١	088	٤٥	٣	۵۷۲	٥٢١	۵۷۳	$\delta a C F_3 + \Delta$
۵۱۸	٢	١	٥١۶	٣	•		۵۱۹	877	δaCF ₃
۵۰۶	۱.	٢	۵.۲	١٤	١	٥٠٠	۵۰۳	٥	16b
٤٨٢	۵	٨	٤٨٢	١٠	•	٤٢٥	٤٢٠	٤۶٨	15+6С-С=О+6С-С-О
٤٣١	•	١	٤٤١	۱	١	٤٣٢	٤٤٨	۵۳3	νΟΟ+δCF3
٤٢٠	•	-	٤١٩	•	•				16a
٤١١	۶	۲	٤٠٥	γ	•	٤٠۵		۳۹۰	νΟΟ+δC-F+15
۳۵۱	١	١	٣٤٤	۱	١			٣٤٩	Δ
٣٢٣	١	٣	۳۲۹	۲	۲	۳۲۲		۳۲۹	$\Gamma + \pi CF_3$
۳۱۱	γ	٤	۳۱۸	۱	١	۳-۸		۳۰۹	δC -F+ Δ + ρCF_3
۲۹۱	•	-	۲۸۰	۱	•	የለዩ			10b+Γ
440	٣	١	۲۲٤	۲	9			77.	v00
۲-۲	۲	١	۲۰۲	۲	١			۲۰۳	15+δC-CF ₃
١٣٩	١	-	181	•	•				Г
١٢٤	٣	١	1.9	۱	۲				γCCC
٨١	•	-	٨١	١	•				Δ
۶۲	١	-	γ.	۲	•				γCph
45	•	١	٥	•	١				τCF ₃
١٩	-	٤	77	•	٤				τph

زير جدول 2 را ببينيد.

جدول ٥. انتسابات نوارهای اصلیBr-TFBA (فرکانس برحسب¹⁻cm)

تئورى			تئورى			تجربى		انتسابات
Br-TFBA-2	I.IR	A.R	Br-TFBA-4	I.IR	A.R	IR(Solid)	R(Solid)	
8781	•	٤٣	۳۲۶۳	۲	۳۵	۳۱۲۰	۳ነ۲۳	νCHα
۳۲۰۹	١	198	۳۲۱۶	١	١١٤	۳.۲۹	ም · 	2
۳۲۰۸	۲	١٢	۳۲۰۹	١	γ.	۳۰۸۹	۳۰γ۸	20b
۳۱۹۶	•	٥٤	۳۲۰۰	•	۶۳		۳۰۶٤	20a
۳۱۹۳	۲	44	۳۱۹٤	۲	۲۲	۳۰٤۰	83 ۳۰	7b
۳۰۵۱	ዮሃሃ	۱۷۲	۳۰۷٤	٣٤λ	4			νОН
			1880	۱۵۸	۲۳	1817	1818	va C=C-C=O+δCH+8b
188.	٥٤٢	۳۵				1817	1818	va C=C-C=O+\deltaCH+δOH+8b
1588	175	١١٤	1848	۳٤۲	60	109.	۱۵۸۹	vs C=C-C=O+δOH+8b
1841	105	757	1848	۵۹۰	١٨١٣		۱۵۸۹	8a+δOH+νC=O
			1090	γ.	10	1012	191.	8b+δCH
۱۵۸۹	٥.	۲۰۳				1070	۱۵۲۰	8b+vC=O+δOH
1019	10	١٤	١٥١٢	90	٢٤	١٤٨٢	10.4	19a
۱٤۶٨	۳۳	-	۱٤٨٠	758	٤١	١٤٥٨		δCHα+δOH+va C-C=C-O+19b
١٤٢٥	66	١	١٤٢٩	۳۱	۲			19a+v О-С=С+бОН
۱۳۲۰	٨۶	۲۷۳	۱۳۸۵	٤٥	۶۲	۱۳٤۰	١٣٤٢	$\delta OH+\nu aC-C=C-O+3$
۱۳۳۰	۶٨	٣٧	۱۳۳۱	١	۲	144Y	1479	14+бОН
ነሥሃሥ	11	γ	۱۳۱۸	٤٢	۱۰۲	181 -	۱۳۰۲	3
١٢٩٤	٩.٩	۱۹۱	١٣٠٤	٤٢٢	የዖዕ	١٢٤٧	١٢٤٨	$\delta OH+\nu C-CF_3+\nu C-C+\nu C-ph$
1700	۶۲	۱۳۲	1404	١١٠	۱۷٤	1777	1448	δCH+vC-CF ₃
14.4	۲۹	٤٩	1414	۵۹	١٤٣	١١٧٨	۱۱۸۱	9a
1171	ፖ አ۳	٤	1184	757	•	12.1	110.	vaCF ₃
١١٤٤	۳۰۸	٤	1188	٤٢	۲	٥٦١١	1.8.	$18b+\delta CH\alpha+\nu sCF_3+\nu C-O$
١١٤٤	١٩	۱۹	۱۱٤٨	۲۲۹	۲	1170	1.92	vsCF ₃
١١٢٤	۶٨	4	۱۱۲۸	101	•	۱۱۰۷	1.8.	$18b+\delta CH\alpha+\nu sCF_3+\nu C-O$
۱۰۸٤	٨۶	٥γ	1-91	18	Υ١	۱۰۷۶	١٠٢٢	18b
1.50	٤	٥٣	۱- ۲۶	۱۲۹	4.	1.58		$18a+\nu C-C+\nu CF_3+\delta CH\alpha$
۱۰۲۳	γ٩	٤	١٠٢٤	٥γ	۲۰	1.1.	1.11	12
1)	-	-	٩٩٣	•	•			5
٩۶٢	•		१۶१	•	•			17a
۹۲۸	٩	۲۱	٩٣٤	١٨	۳۵	٨٩٨		δССС
۹۲۵	۶۳	•	۹۱۸	Υ١	•	۸۹۵		$\gamma OH+17b$
ለዎዕ	٩	-	λολ	10	١	٨٤٠	٨٣٩	10a
٨٣٤	٤	-	٨٣٤	۶	•	۲۲۸		10b
٨١٩	79	١	۸۱۰	Y۵	١	٨ - ٨	۸۱۲	γCHα+10a
٨٠٩	۳۳	١	λ-Υ	٤٠	٣	۲۹۷	۲۹۹	$1+\Delta+\nu C-CF_3+\nu sCF_3$
Y٤۶	•	١	707	٥	•	٢٤٩	Υ٤Υ	γCHα
۲۳۱	٩	١٨	የሥ	•	١	үүх	۲۲۲	$1+\Delta+\overline{\delta sCF_3}$
۲۲۱	۲		۲۳۰	۳۵	11	۶ ٩۶	۲۰۸	11+γCHα

•	1	٩
	٩	

دارو گر و همکاران

۶۲.	٣	-	۶۲۲	١	-	۶۲.	99X	γC=O+4
80Y	٤١	٣	৮১৭	40	۵	۶ዕደ	808	$\Delta + \delta CF_3 + 6b + \nu C - Br$
<i>۶</i> ٤١	•	۶	<i>۶</i> ٤۱	١	۶	888	848	6b
δγλ	١.	١				۵۷۷	146	$\delta a C F_3 + \Delta$
			٥٢١	10	۲	666	146	$\delta a C F_3 + \Delta$
۵۱۸	۲.	11				577	۵۱۲	15+vC-Br+δC-C=O
			۵۰۲	۶	-	٥٠٠		15+vC-Br+δC-C-O
٥١٥	•	٢	۵۱۳	-	١			δaCF ₃
٤٧٨	11	-	٤٨٠	10	-	٤٢٠		16b
٤٤۵	٨	١	٤٤٩	٣	-	٤٤٢	٤٤٠	15+8С-С=О+8С-С-О
٤١٠	•	-	٤١٠	-	-			16a
٣٩٤	٥	۲	٤٠٢	10	-	 የአ۶	ፖለአ	Δ
٣٣٤	4	q	٣٤٣	١	-	۳٤٠	۳۳۶	νΟΟ+δC-Br+15
۳۱۳	٢	-	۲۹۸	٤	۲	۳۰۰	490	$\Delta + \nu C - Br$
٣٠٨	•	١	۲۹۲	•	-	۲۲۰		$\Gamma + \pi CF_3$
۲۶٤	•	-	799	١	-	۲۶۵	757	δC -Br+ Δ + ρCF_3
۲۶.	•	١	759	-	١		۲٤٢	10b+Γ
١٨٢	٤	-	۱۸۸	١	٣			Δ
188	•	-	188	-	-			15+δC-CF ₃
۱۲۱	٢	١	١٣٥	-	-			Γ
١١٤	•	-	٩٩	١	۲			γCCC
৮১	•	-	99	-	-			Δ
٤٥	•	-	٥١	١	•			γCph
٢٤	•	•	۲	-	•			τCF ₃
۶	•	٣	Y	-	٣			τph

زير جدول ۲ را ببينيد.

٥. مراجع

[1] Vakili, M., Nekoei, A.R., Tayyari, S.F., Kanaani, A. and Sanati, N., 2012. Conformation, molecular structure, and intramolecular hydrogen bonding of 1, 1, 1-trifluoro-5, 5-dimethyl-2, 4-hexanedione. *Journal of Molecular Structure*, *1021*, pp.102-111.

[2] Jiménez-Cruz, F., Mar, L.F. and García-Gutierrez, J.L., 2013. Molecular structure and OH… O hydrogen bond in 1-aryl-1, 3-diketone malonates. *Journal of Molecular Structure*, *1034*, pp.43-50.

[3] Paul, B.K. and Guchhait, N., 2013. A quantum chemical computational insight into the intramolecular hydrogen bond interaction in an antibacterial drug molecule-2-acetylindan-1, 3-dione. *Computational and Theoretical Chemistry*, *1012*, pp.20-26.

[4] Tsuji, T., Hamabe, H., Hayashi, Y., Sekiya, H., Mori, A. and Nishimura, Y., 1999. Investigation of intramolecular hydrogen bonds in ortho-hydroxytropolone. *The Journal of chemical physics*, *110*(2), pp.966-971.

[5] Afzali, R., Vakili, M., Tayyari, S.F., Eshghi, H. and Nekoei, A.R., 2014. Conformational analysis, intramolecular hydrogen bonding, and vibrational assignment of 4, 4-dimethyl-1-phenylpentane-1, 3-dione. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, *117*, pp.284-298.

[6] Tayyari, S.F., Vakili, M., Nekoei, A.R., Rahemi, H. and Wang, Y.A., 2007. Vibrational assignment and structure of trifluorobenzoylacetone: A density functional theoretical study. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, *66*(3), pp.626-636.

[7] Tayyari, S.F., Emampour, J.S., Vakili, M., Nekoei, A.R., Eshghi, H., Salemi, S. and Hassanpour, M., 2006. Vibrational assignment and structure of benzoylacetone: A density functional theoretical study. *Journal of molecular structure*, 794(1-3), pp.204-214.

[8] Gaussian 09, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. (2009).

[9] Lee, C., Yang, W. and Parr, R.G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical review B*, *37*(2), p.785.

[10] Darugar, V.R., Vakili, M., Nekoei, A.R., Tayyari, S.F. and Afzali, R., 2017. Tautomerism, molecular structure, intramolecular hydrogen bond, and enol-enol equilibrium of para halo substituted 4, 4, 4-trifluoro-1-phenyl-1, 3-butanedione; Experimental and theoretical studies. *Journal of Molecular Structure*, *1150*, pp.427-437.

[11] Cotman, A.E., Cahard, D. and Mohar, B., 2016. Stereoarrayed CF3-Substituted 1, 3-Diols by Dynamic Kinetic Resolution: Ruthenium (II)-Catalyzed Asymmetric Transfer Hydrogenation. *Angewandte Chemie International Edition*, 55(17), pp.5294-5298.

[12] Wilson Jr, E.B., 1934. The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule. *Physical Review*, 45(10), p.706.

Theoretical and experimental tautomerism study of para-Trifluorobenzoylacetone halogen derivatives using DFT and vibrational spectroscopy

Vahidreza Darugar, Mohammad Vakili, Sayyed Faramarz Tayyari

Department of chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Submited: 21 January 2019, Revised: 06 March 2019, Accepted: 16 March 2019

Abstract

Analysis of the molecular structure and relative stability for the cis-enol stable forms in trifluorobenzoylacetone and halogenated derivatives was performed by density functional theory (DFT), at level B3LYP / 6-311 ++ G **. In these molecules, there are only two forms of cis-enol that are capable of forming an intra-molecular O-H + O hydrogen bond, which are equilibrium. Our calculations show that the difference between these two forms in para-halotrifluorobenzoylacetone molecules is about 1.49-4.75 kcal/mole, indicating that both forms can exist in the sample. The hydrogen bond strength has also been calculated for the stable enilic forms of this molecule through the AIM software and compared with other parameters related to the hydrogen bond strength, including structural parameters and spectroscopy. According to the results obtained in para-halogenated trifluorobenzoylacetone molecules, the hydrogen bond strength in form-2 is greater than Form-4. Comparison of these results also shows that the chlorine, fluorine and bromine substituents in the para position of phenyl ring have no significant effect on the structure and intramolecular hydrogen bond strength, but can lead to the displacement the bands of the phenyl ring.

Keywords: Intramolecular hydrogen bond, substitution effect, Density Functional Theory (DFT), Vibrational Assignment.

*Corresponding author : Vahidreza Darugar

Adress: Department of chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.Tel: 05137336930E-mail: vahidrezadarugar@mail.um.ac.ir

۷1