



# بررسی نظری ساختارهای چرخشی β دی پپتید محافظت شده سرین-آلانین با استفاده از محاسبات کوانتومی

# بهزاد چهکندی'\*

ا گروه شيمي، واحد مشهد، دانشگاه آزاد اسلامي، مشهد، ايران

تاريخ ثبت اوليه:۱۴۰۰/۰۶/۱۵، تاريخ دريافت نسخه اصلاح شده:۱۴۰۰/۰۹/۱۱، تاريخ پذيرش قطعي:۱۴۰۰/۱۰/۰۳

#### چکیدہ

در این تحقیق با استفاده از محاسبات کوانتومی در فاز گازی در دو سطح محاسباتی B3LYP/6-311+G(d,p) و -M06-2X/6 و -M06-2X/6 و -M06-2X/6 (d,p) (d,p)

## واژه های کلیدی: دی پپتید، سرین-آلانین، ساختار چرخشیβ، راماچاندران، DFT ، QTAIM، راماهاندران، M06-2X

#### ۱. مقدمه

اسیدهای آمینه اجزاء اساسی در ساختار پروتئین ها هستند که توسط پیوندهای پپتیدی به یکدیگر متصل می شوند و ساختار اصلی پروتئین ها را تشکیل می دهند. به استثناء اسیدآمینه گلیسین بقیه آنها دارای یک مرکز کایرال،کربن آلفا <sub>۵</sub>C، هستند و به دو فرم انانتیومری L و D وجود دارند. دو اسید آمینه که توسط یک پیوند پپتیدی به هم متصل می شوند دی پپتید نامیده می شود، به طور

تلفن:۲۳۳۲۳۹۴۲۸۹ پست الکترونیک: E-mail: bchahkandi@gmail.com

<sup>\*</sup>عهده دار مکاتبات: بهزاد چهکندی

**نشانی:** گروه شیمی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران



شکل ۱. شمای کلی یک ساختار چرخشیβ به همراه فاصله بین کربنهای α باقیماندههای i و 3+i آن، پیوند هیدروژنی بین مولکولی و زوایای دووجهی i+4 ، arphi ، arphi ا. شمای کلی یک ساختار چرخشیβ به همراه فاصله بین کربنهای α باقیماندههای i و 3+i i ان، پیوند هیدروژنی بین مولکولی و زوایای دووجهی i+4 ، arphi i ا

- 2. Protein folding
- 3. Protein secondary structures
- 4. α-Helix
- 5. Turns
- 6. Residue
- 7. Backbone

<sup>1.</sup>  $\beta$ -turns

بندی می شوند[۱۲]. چرخش های β با یک پیوند هیدروژنی <sup>۱</sup> بین گروه های N-H و C=O باقیمانده های *i* و *E*+*i* مشخص می شوند [۱۳] (شکل ۱ را ببینید). در حالی که تاخوردگی یک پیتید در ساختارهای چرخشی β یک فر آیند چند وجهی بوده و تا حدی تحت تأثیر برهمکنش های محلی است، پیوندهای هیدروژنی بین رشته ای می توانند موجب پایداری بیشتر این ساختارها شوند[۱۴]. اگرچه چرخش های β بیشتر در تتراپپتیدها ایجاد می شوند ولی تری پیتیدها و دی پیتیدها هم می توانند آنها را تشکیل دهند[۵۵]، و خواص شیمیایی این پیتیدها می تواند به طور قابل توجهی متفاوت باشند [۱۹]. در حالیکه باقیمانده های انتهایی ساختارهای β ایجاد شده در دی پیتیدها و تتراپپتیدها می تواند به طور قابل توجهی متفاوت باشند [۱۹]. در حالیکه باقیمانده های انتهایی ساختارهای β ایجاد شده در دی پیتیدها و تتراپپتیدها در اثر ایجاد پیوندهای هیدروژنی پایداری بیشتری کسب می کنند، فاصله بین کربنهای ۵ اسیدهای آمینه انتهایی دی پیتیدها کوتاه تر اثر ایجاد پیوندهای هیدروژنی پایداری بیشتری کسب می کنند، فاصله بین کربنهای ۸ اسیدهای آمینه روی ساختارهای چرخشی ۵ دی پیتیدها انجام گرفته است [۲]. در سال های اخیر مطالعات نظری گسترده ای با استفاده از روش های محاسباتی بر گلایسین نشان می دهد کنفورماسیون ارجح ساختار چرخشی ۵ آن متعلق به نوع ۱ است که با یافته های تجربی و نظری در توافق

است[۱۷]. همچنین مطالعات صورت گرفته بر روی دیپپتید محافظت شده والین-آلانین نشان میدهد از بین ۴۷ ساختار چرخشی ۵ربدست آمده، پایدارترین کنفورمر متعلق به نوع'III است[۱۹].

|                    | Backbone Torsional Angle Values* |              |                 |                 |  |  |  |  |  |  |
|--------------------|----------------------------------|--------------|-----------------|-----------------|--|--|--|--|--|--|
| $\beta$ -turn type | $arphi_{i+1}$                    | $\psi_{i+1}$ | $\varphi_{i+2}$ | $\psi_{_{i+2}}$ |  |  |  |  |  |  |
| Ι                  | -60                              | -30          | -90             | 0               |  |  |  |  |  |  |
| ľ                  | 60                               | 30           | 90              | 0               |  |  |  |  |  |  |
| II                 | -60                              | 120          | 80              | 0               |  |  |  |  |  |  |
| П'                 | 60                               | -120         | -80             | 0               |  |  |  |  |  |  |
| Ш                  | -60                              | -30          | -60             | -30             |  |  |  |  |  |  |
| Ш'                 | 60                               | 30           | 60              | 30              |  |  |  |  |  |  |
| IV                 | -61                              | 10           | -53             | 17              |  |  |  |  |  |  |
| V                  | -80                              | 80           | 80              | -80             |  |  |  |  |  |  |
| V'                 | 80                               | -80          | -80             | 80              |  |  |  |  |  |  |
| VIa1               | -60                              | 120          | -90             | 0               |  |  |  |  |  |  |
| VIa2               | -120                             | 120          | -60             | 0               |  |  |  |  |  |  |
| VIb                | -135                             | 135          | -75             | 160             |  |  |  |  |  |  |
| VIII               | -60                              | -30          | -120            | 120             |  |  |  |  |  |  |

جدول ۱. دستهبندی ساختارهای چرخشیβ و زوایای دووجهی آنها شامل φi+1 ، φi+2 ، ψi+2 ، ψi+2 .

\* انحراف از مقادیر فوق برای سه زاویه چرخشی تا °۳۰ ± و زاویه چهارم تا °۴۵ ± قابل قبول است [۱۱].

در این تحقیق با استفاده از محاسبات کوانتومی و روش تئوری تابعیت چگالی(DFT)<sup>۲</sup>، ساختارهای چرخشیβ محتمل فرم L دیپیید محافظت شده سرین-آلانین، (HCO-L-ser-L-ala-NH<sub>2</sub>)، بر روی نقشه راماچاندران تعیین و مورد بررسی قرار گرفتهاند. ساختار

1. Hydrogen bond

2. Density Functional Theory

سه بعدی دی پیتید محافظت شده HCO-L-ser-L-ala-NH<sub>2</sub> و کنفورماسیونهای محتمل بر روی نقشه راماچاندران [۲۰،۲۱]، برای یک اسیدآمینه محافظت شده در یایانه های -C و -N به تر تیب در شکل های ۲ و ۳ نشان داده شدهاند.



شکل۲. دی پپتید محافظت شده سرین-آلانین (N-For-ser-ala-NH2). دی پپتید محافظت شده سرین-آلانین به چهار بخش تقسیمبندی شده است: گروه محافظ پایانه-N (For=HCO)، باقیمانده سرین، باقیمانده آلانین و گروه محافظ پایانه-C (NH2). تعیین زوایای دووجهی و شماره گذاری اتمهای دی پپتید بر اساس یک سیستم شماره گذاری استاندارد صورت گرفته است.

#### ۲. روشهای محاسباتی

حفاظت از اسیدهای آمینه یک موضوع ضروری برای کنترل واکنش جفت شدن آنها است. لذا ابتدا در دو پایانه -C و -N دی-پپتید L-ser-L-ala به ترتیب گروههای محافظ NH2 و OHC را اضافه نموده که ضمن تشکیل یک پیوند آمینه ویژه، اثرات فضایی باقی مانده های اسید آمینه مجاور و محیط دی پپتید را در پروتئین تقلید می کند. همانطور که در شکل ۳ مشاهده می شود، ساختار دی پپتید مورد مطالعه به چهار بخش شامل گروه محافظ پایانه ۸۱ باقیمانده سرین، باقیمانده آلانین و گروه محافظ پایانه C تقسیم شده و طبق یک روش استاندارد شماره گذاری شده است[۲۲،۲۳]. ساختار سه بعدی دی پپتید توسط زوایای چرخشی *۴ ، ۴ ، ۳ و و ب* توصیف می شود. زوایای دووجهی *۴ ، ۴ و ۵ وضعی*ت زنجیر اصلی را مشخص می کنند در حالی که *بر کنفو*رماسیونهای حاصل از توضیف می شود. زوایای دووجهی *۴ ، ۴ و ۵ وضعی*ت زنجیر اصلی را مشخص می کنند در حالی که *بر کنفو*رماسیونهای حاصل از موحیف می شود. زوایای دووجهی *۴ ، ۴ و ۵ وضعی*ت زنجیر اصلی را مشخص می کنند در حالی که *بر کنفو*رماسیونهای حاصل از ترانس قرار دارند (<sup>°</sup> ۸۱۰ ه) و زوایای *۴ ، ۴ و ۵ و ضعی*ت زنجیر اصلی را مشخص می کنند در حالی که *بر کنفو*رماسیونهای حاصل از مستند. بر اساس تحلیل کنفورماسیونی چند بعدی (MDCA) و معروط به چرخش حول پیوندهای پپتیدی نسبت به هم در موقعیت کنفورماسیونی پایدار بر روی نقشه راماچاندران پیش بینی می شود[۲۷] و مقادیر زوایای *۴ و بار*ا ۲۰۸۰ه *۲* ساختار کنفورماسیونی پایدار بر روی نقشه راماچاندران پیش بینی می شود[۲۷]، پس برای دی پپتید سرین–آلانین الم=۹×۹ ساختار چرخش حول زنجیر جانبی شامل گوچ منفی (-g، آنتی (a) و گوچ مثبت (+g) برای دی پپتید مورد مطالعه[۲۸]، ۳۲۰۴ ۹-۹×۳

<sup>1.</sup> Multi Dimensional Conformational Analysis

ساختار محتمل خواهیم داشت. از بین ۲۴۳ ساختار محتمل برای دیپیتید سرین-آلانین، ساختارهای چرخشیβمورد مطالعه قرار می-گیرند (جدول ۱ راسینید).



شکل۳. نمایش توپولوژیکی نقشه راماچاندران برای یک اسیدآمینه محافظت شده در پایانههای-N و-C با فرم کلیPND-CHR-CO-NH توانند گروهای H وCH3 باشند) [۲۳].

همه ساختارها با استفاده از محاسبات کوانتومی به روش DFT در سطوح B3LYP و M06-2X و سری پایه (G(d,p)+G(d,p) همه ساختارها با استفاده از محاسبات فرکانس در سطوح محاسباتی مشابه، مقادیر ترمودینامیکی از جمله انرژی و انرژی آزاد گیبس نسبی شده و با استفاده از محاسبات فرکانس در سطوح محاسباتی مشابه، مقادیر ترمودینامیکی از جمله انرژی و انرژی آزاد گیبس نسبی ساختارهای چرخشیβ نسبت به پایدارترین ساختار بدست آورده شدهاند. همچنین با استفاده از نظریه کوانتومی اتمها در مولکول ها (QTAIM) (QTAIM) (PT]، برهمکنش های بین مولکولی شامل پیوندهای هیدروژنی بین مولکولی تعیین و مورد بررسی قرار گرفتهاند. همه محاسبات کوانتومی با استفاده از نرمافزار Gaussian09 [۳۰]، در فاز گازی، دمای ۲۹۸/۱۵ کلوین و فشار ۱ اتمسفر انجام شده اند. همچنین محاسبات MIM <sup>۲</sup>با استفاده از نرمافزار AIMAIP [۳۱] صورت گرفتهاند.

## ۳. نتایج و بحث

ساختارهای چرخشی *β* بر اساس زوایای دووجهی ۲۴۳ ( *ψ<sub>i+1</sub> ψ<sub>i+1</sub> φ<sub>i+2</sub> و<sub>i+2</sub> تع*ریف می شوند (شکل ۱ و جدول ۱ را ببینید). بر اساس محاسبات انجام شده از بین همه ۲۴۳ کنفورمر محتمل دی پیتید محافظت شده سرین-آلانین، ۲۶ کنفورمر به عنوان ساختار چرخشی *β* شناسایی شدهاند. انرژیهای نسبی، انرژیهای آزادگیبس نسبی، زوایای دووجهی و نوع ۲۶ ساختارهای چرخشی *β* مورد مطالعه در جدول ۲ آورده شده است. نتایج بدست آمده نشان می دهد که ساختارهای چرخشی *β نوع ۷ و I به تر*تیب بیشترین و کمترین پایداری را دارند، به عبارتی کمترین و بیشترین مقادیر انرژی و انرژیهای نسبی را دارا هستند. همانطور که مقادیر جدول ۲ نشان می دهد کنفورمرهای و به ترتیب پایدارترین و ناپایدارترین ساختارهای *β* هستند. مقادیر انرژی و انرژی آزادگیبس نسبی

<sup>1.</sup> Quantum Theory of Atoms In Molecules

<sup>2.</sup> Atoms In Molecules

کنفورمر <sup>۵</sup>۲<sup>۳</sup> در سطوح محاسباتیB3LYP وB3LYP به ترتیب (۱۴/۸۹) ۱۶/۹۱ و (۱۲/۸۹) کیلوکالریبرمول هستند. مقادیر داخل پرانتز انرژیهای آزاد گیبس نسبی هستند.

| β-turn<br>type | Guile                      |            | B3LY     | (P/6-311+    | G(d,p)       | M06-2X/6-311+G(d,p)                     |            |          |              |              |                          |
|----------------|----------------------------|------------|----------|--------------|--------------|-----------------------------------------|------------|----------|--------------|--------------|--------------------------|
|                | Conformer                  | $\phi_{i}$ | $\psi_i$ | $\phi_{i+1}$ | $\psi_{i+1}$ | $\Delta \mathbf{E} (\Delta \mathbf{G})$ | $\phi_{i}$ | $\psi_i$ | $\phi_{i+1}$ | $\psi_{i+1}$ | Δ <b>Ε</b> (Δ <b>G</b> ) |
| Ι              | $\alpha_L^a \gamma_L$      | -69.62     | -40.25   | -71.89       | 62.86        | 16.91(14.89)                            | -60.11     | -44.58   | -76.01       | 53.42        | 14.63(12.89)             |
|                | $\alpha_L^- \gamma_L$      | -78.07     | -19.38   | -71.25       | 59.80        | 11.49(10.03)                            | -71.82     | -21.91   | -74.18       | 55.67        | 9.39(8.37)               |
| Γ'             | $\alpha_D^a \gamma_D$      | 59.99      | 38.12    | 82.58        | -76.14       | 6.72(6.22)                              | 55.90      | 42.15    | 83.92        | -76.77       | 5.01 <i>(4.99)</i>       |
|                | $\alpha_D^+ \gamma_D$      | 45.09      | 59.33    | 82.31        | -78.19       | 8.79(8.42)                              | 45.51      | 54.59    | 82.35        | -81.41       | 6.60(6.84)               |
|                | $\alpha_D^- \gamma_D$      | 60.47      | 40.75    | 81.50        | -75.68       | 9.71(8.59)                              | 57.82      | 41.41    | 83.06        | -76.70       | 6.65(6.13)               |
|                | $\varepsilon_D^a \alpha_L$ | 53.91      | 144.12   | -65.20       | -18.87       | 10.81(10.69)                            | 52.23      | -144.64  | -63.75       | -19.19       | 7.23(7.82)               |
| П,             | $\varepsilon_D^a \gamma_L$ | 70.60      | -177.15  | -72.70       | 59.71        | 10.52(9.58)                             | 65.50      | -173.93  | -65.34       | 59.82        | 10.02(8.65)              |
|                | $\varepsilon_D^a \delta_L$ | 72.00      | -161.37  | 169.40       | 39.93        | 14.53(12.82)                            | 62.75      | -160.41  | 170.61       | 38.72        | 12.21(11.07)             |
|                | $\alpha_L^a \alpha_L$      | -59.51     | -37.68   | -64.46       | -21.02       | 16.09(14.60)                            | -57.04     | -37.16   | -61.30       | -23.29       | 12.86(12.09)             |
| III            | $\alpha_L^+ \alpha_L$      | -75.86     | -5.89    | -65.46       | -25.88       | 9.61(8.53)                              | -68.30     | -14.18   | -62.32       | -26.59       | 6.21(5.87)               |
|                | $\alpha_L^- \alpha_L$      | -66.05     | -23.22   | -63.60       | -25.05       | 9.80(9.19)                              | -65.56     | -23.07   | -60.81       | -26.01       | 6.35(6.28)               |
| v              | $\gamma_L^a \gamma_D$      | -81.02     | 63.00    | 81.46        | -74.32       | 3.25(2.95)                              | -84.22     | 65.76    | 83.43        | -68.72       | 3.00(2.79)               |
|                | $\gamma_L^+ \gamma_D$      | -80.30     | 74.37    | 80.24        | -74.03       | 0.00 (0.00)                             | -83.07     | 71.65    | 83.18        | -68.12       | 0.00 (0.00)              |
|                | $\gamma_L^- \gamma_D$      | -80.78     | 64.08    | 80.61        | -73.30       | 5.91(5.17)                              | -84.09     | 64.65    | 83.12        | -69.83       | 5.11(4.46)               |
|                | $\gamma_D^a \gamma_L$      | 72.55      | -65.9    | -72.15       | 51.55        | 12.30(11.06)                            | 74.91      | -70.50   | -75.37       | 50.62        | 10.87(9.84)              |
| V'             | $\gamma_D^+ \gamma_L$      | 57.11      | -38.14   | -72.96       | 54.22        | 14.38(12.64)                            | 59.45      | -42.04   | -75.87       | 52.17        | 13.79(12.23)             |
|                | $\gamma_D \gamma_L$        | 73.95      | -55.14   | -71.41       | 54.84        | 10.85(9.57)                             | 78.47      | -55.17   | -74.22       | 52.26        | 9.48(8.72)               |
|                | $\beta_L^a \gamma_L$       | -159.46    | -173.43  | -72.82       | 55.81        | 6.33(4.95)                              | -159.98    | -177.57  | -75.56       | 54.74        | 5.37(4.54)               |
|                | $\beta_L^a \delta_L$       | -160.76    | -171.67  | 171.25       | 36.46        | 8.58(7.16)                              | -162.57    | 171.89   | -75.04       | 60.22        | 8.81(7.76)               |
|                | $\beta_L^+ \gamma_L$       | -71.13     | 169.20   | -71.94       | 62.42        | 10.95(9.37)                             | -164.29    | 177.58   | -161.87      | 28.63        | 7.67(6.78)               |
| VIa2           | $\beta_L^+ \delta_L$       | -161.03    | 175.17   | 170.62       | 38.93        | 14.21(11.36)                            | -159.73    | 179.94   | 175.34       | 58.25        | 9.86(9.39)               |
|                | $\beta_L^- \delta_L$       | -121.53    | 136.05   | 167.13       | 37.29        | 16.49(13.21)                            | -126.00    | 138.57   | 172.45       | 56.42        | 14.21(12.27)             |
|                | $\beta_L^a \alpha_L$       | -162.07    | 159.35   | -64.91       | -28.22       | 8.00(7.03)                              | -161.06    | 158.26   | -60.19       | -30.03       | 5.37(4.87)               |
|                | $\beta_L^+ \alpha_L$       | -162.79    | 178.78   | -64.49       | -21.26       | 9.72(8.90)                              | -164.73    | -178.50  | -61.78       | -23.60       | 6.49(6.07)               |
| VIII           | $\alpha_L^a \beta_L$       | -68.60     | -36.07   | 166.61       | -162.49      | 15.48(12.02)                            | -56.16     | -40.92   | 169.93       | -162.47      | 13.02(10.68)             |
| VIII           | $\alpha_{T} \beta_{I}$     | -73.76     | -19.51   | 164.56       | -163.52      | 9.93(7.42)                              | -67.20     | -23.28   | 168.50       | -164.86      | 7.38(5.83)               |

جدول ۲. دستهبندی ساختارهای چرخشیβ، مقادیر انرژیهای نسبی (برحسب کیلوکالریبرمول) و زوایای دووجهی چرخشی دی پپتید محافظت شده سرین-آلانین در دو سطح محاسباتیB3LYP/6-311+G(d,p) و M06-2X/6-311+G(d,P

همچنین سه ساختار  $\beta$  پایدارتر نوع V در بین ۲۶ ساختار، به ترتیب  $\gamma_L^{\ \gamma}\gamma_D^{\ \gamma}, \gamma_L^{\ \gamma}\gamma_D^{\ \gamma}, \gamma_L^{\ \gamma}\gamma_D^{\ \gamma}$  هستند. مقادیر انرژی و انرژی آزادگیبس (۲/۷۵) سه ساختار  $\beta_L^{\ \alpha}\gamma_D^{\ \gamma}$  و  $\gamma_L^{\ \alpha}\gamma_D^{\ \gamma}$  هستند. مقادیر انرژی و انرژی آزادگیبس نسبی کنفورمرهای  $\gamma_L^{\ \alpha}\gamma_D^{\ \gamma}$  و  $\gamma_L^{\ \alpha}\gamma_D^{\ \gamma}$  هستند. مقادیر انرژی و انرژی آزادگیبس (۲/۷۹) (۲/۹۵) سبی کنفورمرهای  $\gamma_L^{\ \alpha}\gamma_D^{\ \gamma}$  و  $\gamma_L^{\ \alpha}\gamma_D^{\ \gamma}$  هستند. مقادیر انرژی و انرژی آزادگیبس (۲/۹۵) (۲/۹۵) (۲/۹۹) مستند.

تشکیل پیوند هیدروژنی درون مولکولی بین اتم اکسیژن گروه کربونیل اولین باقیمانده آمینواسیدی ، (i)، و اتم هیدروژن گروه آمین چهارمین باقیمانده آمینواسیدی، (i+3)، ((i+3)، منجر به پایداری ساختارهایβ میشود[۱۳]. برای بررسی

برهمکنش های پیوند هیدروژنی در ساختارهایβمحاسباتAIM بر اساس نظریه بَدِر' [۲۹] شامل تحلیل توپولوژیکی خواص نقاط بحراني پيوندي (BCPs) صورت گرفته است. دانسيته الکتروني کل، (p(r)، و لاپلاسين، (∇²p(r)، آن در نقاط بحراني طبيعت پيوند هیدروژنی را تعیین می کند. برای برهمکنش های کووالانسی .ρ(r)>0.1au و در مورد برهمکنش های غیر کووالانسی شامل واندروالسی و پیوند هیدروژنی. $\rho(r) = 0.001 - 0.01au$ هستند [۳۲–۳۲]. برای برهمکنش پیوند هیدروژنی مقادیر دانسیته الکترونی کل و لایلاسین به صورت.ho(r) = 0.02 - 0.139 au. ho(r) = 0.02 - 0.034 au. مقادیر دانسیته الکترونی کل و لایلاسین به صورت. همچنین انرژی برهمکنش ییوند هیدروژنی ( $E_{HR}$ ) از رابطه  $E_{HR} = \frac{1}{2}V(rBCP)$  بدست می آید که در این رابطه (V(rBCP)، انرژی پتانسیل الکترونی در نقطه بحرانی است. مقادیر طول پیوند هیدروژنیho(r)،ho(r)،ho(r)و $ho_{_{HB}}$  ساختارهایeta مختلف دیپپتید محافظت شده L-ser-L-ala در جدول ۳ آورده شده است. نتایج محاسبات نشان میدهد پیوند هیدروژنی L-ser-L-ala در کنفورمرهای  $\alpha_L = \alpha_L + \alpha$ ترتیب (۳/۵۹، ۴/۷۵، ۳/۶۶، ۴٫۹۴) و (۳/۲۲، ۳/۷۵، ۲/۸۰، ۳/۷۹) کیلو کالری بر مول است و فاصله پیوندی آن ( ( ( ( س. ۲۰۰ کنفورمرها در سطوح محاسباتی B3LYP و M06-2X به ترتیب در محدوده ۲/۲۰–۲/۱۷ و ۲/۱۷–۲/۰۶ آنگستروم قرار دارد. در مطالعه انواع دیگری از پیوندهای هیدروژنی مانند نيز β مورد ساختار هاي  $O_{11}...H_{12} - N_{0}O_{14}...H_{12} - N_{3}O_{21}...H_{12} - N_{3}O_{11}...H_{12} - N_{0}O_{11}...H_{12} - N_{0}O_{11}...H_{12} - N_{0}O_{11}...H_{12} - N_{0}O_{11}...H_{12} - N_{0}O_{11}...H_{12} - N_{12}O_{11}O_{11}...H_{12} - N_{12}O_{11}O_{11}O_{11}...H_{12} - N_{12}O_{11}O_{11}O_{11}...H_{12} - N_{12}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}O_{11}$ و  $O_{_{15}} - N_{_{15}}$  تشكيل مي شوند. البته نتايج بدست آمده از دو سطح محاسباتي در برخي موارد اختلافات كمي دارند، به عنوان مثال در سطح محاسباتی B3LYP تشکیل پیوندهای هیدروژنی  $N_{_{13}}$ ... $H_{_{15}}$  م $N_{_{2}}$ ... $H_{_{15}}$  م و  $N_{_{13}}$ ... $N_{_{12}}$  به ترتیب برای کنفورمرهای این M06-2X این ( $\alpha_L^- \alpha_L^- \alpha_L^-$ ييوندها ديده نمي شوند.

1. Bader

2. Bonding Critical Points

| nun<br>Ipe | Conformer                         |          |      | <i>O</i> <sub>14</sub> <i>H</i> <sub>19</sub> | -N <sub>19</sub>                         |                                 | $N_{_{\rm S}}H_{_{\rm IS}}$ – $N_{_6}$ |                |                                    |          | <i>O</i> <sub>14</sub> <i>H</i> <sub>27</sub> - <i>O</i> <sub>21</sub> |           |                         |          |
|------------|-----------------------------------|----------|------|-----------------------------------------------|------------------------------------------|---------------------------------|----------------------------------------|----------------|------------------------------------|----------|------------------------------------------------------------------------|-----------|-------------------------|----------|
| ι<br>β-1   | Topological<br>parameters         |          | r    | $\rho(r)$                                     | $\nabla^2$<br>$\rho(r)$                  | $E_{HB}$                        | r                                      | $\rho(r)$      | $\nabla^2$<br>$\rho(r)$            | $E_{HB}$ | r                                                                      | $\rho(r)$ | $\nabla^2$<br>$\rho(r)$ | $E_{HB}$ |
|            | and he                            | B3LYP    | 1.96 | 0.027                                         | 0.084                                    | 7.04                            | 2.36                                   | 0.016          | 0.064                              | 3.72     | *                                                                      | *         | *                       | *        |
|            | $a_L \gamma_L$                    | M06-2X   | 2.04 | 0.020                                         | 0.080                                    | 4.60                            | *                                      | *              | *                                  | *        | *                                                                      | *         | *                       | *        |
| 1          | ~~×                               | B3LYP    | 1.95 | 0.027                                         | 0.086                                    | 7.31                            | 2.27                                   | 0.018          | 0.066                              | 4.24     | *                                                                      | *         | *                       | *        |
|            | $\alpha_L \gamma_L$               | M06-2X   | 2.00 | 0.022                                         | 0.089                                    | 5.34                            | *                                      | *              | *                                  | *        | *                                                                      | *         | *                       | *        |
|            | and an                            | B3LYP    | 2.14 | 0.018                                         | 0.059                                    | 4.72                            | *                                      | *              | *                                  | *        | 2.00                                                                   | 0.026     | 0.083                   | 7.01     |
|            | $\alpha_{\tilde{D}}\gamma_{D}$    | M06-2X   | 2.18 | 0.016                                         | 0.058                                    | 3.37                            | *                                      | *              | *                                  | *        | 2.08                                                                   | 0.021     | 0.080                   | 5.34     |
|            | art.v.                            | B3LYP    | 2.18 | 0.017                                         | 0.055                                    | 4.35                            | *                                      | *              | *                                  | *        | 2.17                                                                   | 0.018     | 0.061                   | 4.78     |
| r          | $\alpha_{D}\gamma_{D}$            | M06-2X   | 2.21 | 0.015                                         | 0.054                                    | 3.15                            | *                                      | *              | *                                  | *        | 2.33                                                                   | 0.013     | 0.048                   | 3.07     |
|            | ar=14                             | B3LYP    | 2.11 | 0.019                                         | 0.062                                    | 5.02                            | *                                      | *              | *                                  | *        | *                                                                      | *         | *                       | *        |
|            | $\alpha_D \gamma_D$               | M06-2X   | 2.17 | 0.016                                         | 0.058                                    | 3.35                            | *                                      | *              | *                                  | *        | *                                                                      | *         | *                       | *        |
|            |                                   |          |      | <i>O</i> <sub>14</sub> <i>H</i> <sub>19</sub> |                                          | <i>O</i> <sub>21</sub> <i>H</i> | $-N_{6}$                               |                | $O_{\mu} \dots H_{\mu} - N_{\rho}$ |          |                                                                        |           |                         |          |
|            | - 9                               | B3LYP    | *    | *                                             | *                                        | *                               | 1.98                                   | 0.027          | 0.086                              | 7.54     | 2.20                                                                   | 0.014     | 0.048                   | 3.59     |
|            | $\varepsilon_D^{\alpha}\alpha_L$  | M06-2X   | *    | *                                             | *                                        | *                               | 2.01                                   | 0.023          | 0.095                              | 5.73     | 2.13                                                                   | 0.015     | 0.062                   | 3.22     |
|            | 0                                 | B3LYP    | 1.95 | 0.028                                         | 0.088                                    | 7.39                            | 1.97                                   | 0.028          | 0.086                              | 7.68     | *                                                                      | *         | *                       | *        |
| II'        | $\varepsilon_D^{\omega} \gamma_L$ | M06-2X   | 1.91 | 0.027                                         | 0.111                                    | 7.11                            | 2.01                                   | 0.023          | 0.092                              | 5.61     | *                                                                      | *         | *                       | *        |
|            | $\varepsilon^a_D \delta_L$        | B3LYP    | *    | *                                             | *                                        | *                               | 2.01                                   | 0.026          | 0.080                              | 7.04     | *                                                                      | *         | *                       | *        |
|            |                                   | M06-2X   | *    | *                                             | *                                        | *                               | 2.03                                   | 0.022          | 0.090                              | 5.38     | *                                                                      | *         | *                       | *        |
|            |                                   |          |      | <i>O</i> <sub>11</sub> <i>H</i> <sub>10</sub> |                                          | N,H                             | $N_{15} - N_{6}$                       |                | $O_{21}H_{12}-N_{3}$               |          |                                                                        |           |                         |          |
|            | au <sup>Q</sup> au                | B3LYP    | 2.08 | 0.018                                         | 0.061                                    | 4.75                            | *                                      | *              | *                                  | *        | *                                                                      | *         | *                       | *        |
|            | $\alpha_L^{\alpha} \alpha_L$      | M06-2X   | 2.06 | 0.017                                         | 0.071                                    | 3.75                            | *                                      | *              | *                                  | *        | *                                                                      | *         | *                       | *        |
|            | au <b>t</b> - 11                  | B3LYP    | 2.20 | 0.015                                         | 0.047                                    | 3 66                            | 2.32                                   | 0.017          | 0.064                              | 3 92     | *                                                                      | *         | *                       | *        |
| III        | $\alpha_L^+ \alpha_L$             | M06-2X   | 2.17 | 0.014                                         | 0.054                                    | 2.80                            | *                                      | *              | *                                  | *        | *                                                                      | *         | *                       | *        |
|            |                                   | B3LYP    | 2.07 | 0.019                                         | 0.062                                    | 4 94                            | 2.35                                   | 0.015          | 0.062                              | 3 63     | 2.32                                                                   | 0.017     | 0.073                   | 4 66     |
|            | $\alpha_L^- \alpha_L$             | M06-2X   | 2.10 | 0.016                                         | 0.065                                    | 3.39                            | *                                      | *              | *                                  | *        | *                                                                      | *         | *                       | *        |
|            |                                   |          |      | 0H                                            | $-N_{10}$                                |                                 |                                        | 0 <sub>.</sub> | $I_{15} - N_{6}$                   |          | $O_{\mu} \dots H_{\mu} - O_{\mu}$                                      |           |                         |          |
|            | -                                 | B3LYP    | 2.05 | 0.022                                         | 0 070                                    | 5.83                            | 2.02                                   | 0.025          | 0.081                              | 6 69     | 2.02                                                                   | 0.025     | 0.081                   | 6 70     |
|            | $\gamma_L^{\alpha} \gamma_D$      | M06-2X   | 2.07 | 0.020                                         | 0.077                                    | 4.56                            | 2.06                                   | 0.020          | 0.077                              | 4.51     | 2.13                                                                   | 0.019     | 0.073                   | 4.78     |
|            |                                   | B3LYP    | 2.06 | 0.022                                         | 0.069                                    | 5.79                            | 2.04                                   | 0.023          | 0.071                              | 5.96     | 2.05                                                                   | 0.024     | 0.076                   | 6.38     |
| V          | $\gamma_L^+ \gamma_D$             | M06-2X   | 2.08 | 0.019                                         | 0.075                                    | 4 4 1                           | 2.06                                   | 0.020          | 0 077                              | 4 54     | 2.12                                                                   | 0.020     | 0.073                   | 4 84     |
|            | $\gamma_L^- \gamma_D$             | B3LYP    | 2.03 | 0.024                                         | 0.074                                    | 6.20                            | 1 91                                   | 0.030          | 0.093                              | 7.97     | *                                                                      | *         | *                       | *        |
|            |                                   | M06-2X   | 2.06 | 0.020                                         | 0.078                                    | 4.63                            | 1.97                                   | 0.024          | 0.095                              | 5.91     | *                                                                      | *         | *                       | *        |
|            |                                   | 0 H -N   |      |                                               |                                          |                                 | 0 1                                    | I = N          |                                    |          |                                                                        |           |                         |          |
|            |                                   | BILVP    | 1.02 | 0,020                                         | 1 <sup>1</sup> <sup>1</sup> <sup>1</sup> | 7 07                            | 1.07                                   | 0.027          | 5 1 6<br>0 0 0 2                   | 7.00     | *                                                                      | *         | *                       | *        |
|            | $\gamma_D^a \gamma_L$             | M06-2X   | 1.92 | 0.023                                         | 0.093                                    | 6.02                            | 2.03                                   | 0.027          | 0.083                              | 5.01     | *                                                                      | *         | *                       | *        |
|            |                                   | BILYP    | 1.90 | 0.024                                         | 0.097                                    | 8.00                            | 1.05                                   | 0.021          | 0.005                              | 10.02    | *                                                                      | *         | *                       | *        |
| V          | $\gamma_D^+ \gamma_L$             | M06-2X   | 1.91 | 0.030                                         | 0.094                                    | 6.00                            | 1.01                                   | 0.037          | 0.110                              | 9.56     | *                                                                      | *         | *                       | *        |
|            |                                   | B3LVP    | 1.95 | 0.025                                         | 0.100                                    | 7 70                            | 1.04                                   | 0.032          | 0.121                              | 0.50     | *                                                                      | *         | *                       | *        |
|            | $\gamma_D \gamma_L$               | M06-2X   | 1.93 | 0.029                                         | 0.092                                    | 6.01                            | 1.00                                   | 0.032          | 0.100                              | 6.04     | *                                                                      | *         | *                       | *        |
| 1          |                                   | 14100-7V | 1.90 | 0.024                                         | 10.098                                   | 0.01                            | 1.95                                   | 0.020          | 0.102                              | 0.00     |                                                                        | · *       | · · ·                   |          |

جدول ۳. پارامترهای توپولوژیکی (برحسب واحدهای اتمی a.u.) و انرژی پیوند هیدروژنی درون مولکولی ساختارهای چرخشیβ (برحسب کیلوکالریبرمول) دیپپتید محافظت شده سرین-آلانین در دو سطح محاسباتی B3LYP/6-311+G(d,p) و B3LYP/6-311+G(d,p).

چهکندی

| nrn<br>pe | Conformer                  |        |      | 0 <sub>14</sub> H <sub>19</sub> | -N <sub>19</sub>        |          | $O_{_{14}}H_{_{12}}-N_{_{3}}$ |                                 |                         |          | $O_{21}\dots H_{15} - N_{6}$  |           |                         |          |
|-----------|----------------------------|--------|------|---------------------------------|-------------------------|----------|-------------------------------|---------------------------------|-------------------------|----------|-------------------------------|-----------|-------------------------|----------|
| ÷β        | Topological<br>parameters  |        | r    | $\rho(r)$                       | $\nabla^2$<br>$\rho(r)$ | $E_{HB}$ | r                             | $\rho(r)$                       | $\nabla^2$<br>$\rho(r)$ | $E_{HB}$ | r                             | $\rho(r)$ | $\nabla^2$<br>$\rho(r)$ | $E_{HB}$ |
|           | B3LYF                      | B3LYP  | 1.96 | 0.027                           | 0.086                   | 7.28     | 2.08                          | 0.024                           | 0.091                   | 6.44     | 1.95                          | 0.029     | 0.091                   | 7.82     |
|           | $P_L Y_L$                  | M06-2X | 1.98 | 0.023                           | 0.093                   | 5.68     | 2.12                          | 0.022                           | 0.104                   | 5.67     | 2.00                          | 0.023     | 0.096                   | 5.74     |
|           | Rtw                        | B3LYP  | 1.97 | 0.026                           | 0.084                   | 6.99     | 2.16                          | 0.021                           | 0.085                   | 5.53     | *                             | *         | *                       | *        |
|           | $P_L Y_L$                  | M06-2X | 2.01 | 0.022                           | 0.088                   | 5.23     | *                             | *                               | *                       | *        | *                             | *         | *                       | *        |
|           | 0 ± 5                      | B3LYP  | *    | *                               | *                       | *        | 2.13                          | 0.022                           | 0.087                   | 5.80     | *                             | *         | *                       | *        |
|           | $\rho_L o_L$               | M06-2X | *    | *                               | *                       | *        | 2.12                          | 0.022                           | 0.104                   | 5.64     | *                             | *         | *                       | *        |
| VIa2      | 0- 0                       | B3LYP  | *    | *                               | *                       | *        | *                             | *                               | *                       | *        | *                             | *         | *                       | *        |
|           | $\rho_L o_L$               | M06-2X | *    | *                               | *                       | *        | *                             | *                               | *                       | *        | *                             | *         | *                       | *        |
|           | $\beta_L^a \delta_L$       | B3LYP  | *    | *                               | *                       | *        | 2.11                          | 0.023                           | 0.088                   | 6.12     | 2.02                          | 0.026     | 0.080                   | 6.93     |
|           |                            |        |      | O_1H19                          | $-N_{o}$                |          |                               | <i>О</i> <sub>14</sub> <i>Н</i> | $-N_{3}$                |          | $O_{_{21}}H_{_{15}}-N_{_{6}}$ |           |                         |          |
|           | $\beta_L^a \delta_L$       | M06-2X | 2.30 | 0.011                           | 0.043                   | 2.35     | *                             | *                               | *                       | *        | 2.22                          | 0.018     | 0.067                   | 4.07     |
|           | 00.00                      | B3LYP  | 2.13 | 0.019                           | 0.056                   | 5.08     | 2.17                          | 0.021                           | 0.083                   | 5.46     | *                             | *         | *                       | *        |
|           | $\rho_L^{\alpha} \alpha_L$ | M06-2X | 2.13 | 0.016                           | 0.063                   | 3.52     | *                             | *                               | *                       | *        | 2.44                          | 0.013     | 0050                    | 3.10     |
|           | B3LY                       | B3LYP  | 2.13 | 0.019                           | 0.055                   | 4.89     | 2.11                          | 0.022                           | 0.089                   | 6.02     | *                             | *         | *                       | *        |
|           | $\rho_L \alpha_L$          | M06-2X | 2.12 | 0.016                           | 0.064                   | 3.52     | 2.11                          | 0.022                           | 0.089                   | 6.02     | *                             | *         | *                       | *        |
|           |                            |        |      | $O_{_{15}}H_{_{15}}-N_{_{6}}$   |                         |          |                               |                                 |                         |          |                               |           |                         |          |
|           | and R                      | B3LYP  | 2.19 | 0.020                           | 0.085                   | 5.34     | *                             | *                               | *                       | *        | *                             | *         | *                       | *        |
| VIII      | $a_L p_L$                  | M06-2X | *    | *                               | *                       | *        | *                             | *                               | *                       | *        | *                             | *         | *                       | *        |
| VIII      | ar= 0                      | B3LYP  | 2.20 | 0.020                           | 0.085                   | 5.25     | *                             | *                               | *                       | *        | *                             | *         | *                       | *        |
|           | $\alpha_L \beta_L$         | M06-2X | *    | *                               | *                       | *        | *                             | *                               | *                       | *        | *                             | *         | *                       | *        |

به طور مشابه برای کنفورمرهای  $\alpha_L^{-} \alpha_L$  و  $(\alpha_L^{-} \beta_L^{-} \alpha_L^{-} \beta_L^{-} \alpha_L^{-} \alpha_L^{$ 

بر اساس مقادیر ( $\rho(r), \rho(r)$  و  $\Gamma_{B}$  میتوان پیوند هیدروژنی را به ضعیف یا متوسط تقسیم بندی کرد [ $\rho(r), \rho(r)$  به عنوان مثال مقادیر ( $\rho(r), \rho(r)$  برای پیوند  $E_{HB}$  میتوان پیوند هدر محدوده های B3LYP و B3LYP ی B3LYP و B3LYP ی ای  $\Gamma_{H-B} - N_{-1}$ . ( $\Gamma_{H-B} - N_{-1}$ ) ( $\rho(r)$  به ترتیب در محدوده های  $\rho(r), \rho(r)$  ( $\rho(r), \rho(r)$  به ترتیب در محدوده های  $\Gamma_{H-B} - \rho^2 \rho(r), \rho(r) - \rho^2 \rho(r), \rho(r)$  و ( $\Gamma_{H-B} - \rho^2 \rho(r), \rho(r), \rho(r)$  به ترتیب در محدوده های ( $\Gamma_{H-B} - \rho^2 \rho(r), \rho(r) - \rho^2 \rho(r), \rho(r)$ ) و ( $\Gamma_{H-B} - \rho^2 \rho(r), \rho(r), \rho^2 \rho(r), \rho^2$ 

(۲/۰۸ ، ۲/۰۴) کیلو کالریبرمول هستند و فاصله اتمهای O و H در دو سطح محاسباتی یاد شده به ترتیب ( ۲/۰۶، ۲/۰۶، ۲/۰۹) و ۲/۰۴، ۲/۰۹) و ۲/۰۴ کیلو کالری-ترتیب دو و یک پیوند هیدروژنی در دو سطح محاسباتی B3LYP و B3LYP با مقادیر انرژی (۲/۰۷، ۲/۰۲) و ۴/۶۶ کیلو کالری-برمول و فاصله پیوندی (۲/۰۹، ۲/۰۴) و ۲/۰۴ آنگستروم را تشکیل می دهد. ساختارهای  $\gamma_L^+ \gamma_e \ q_L^{\alpha} \gamma_L$  به همراه مقادیر تو پولوژیکی مربوطه که با استفاده از محاسبات AIM در سطح X محاسباتی M06-2X با مقادیر انرژی (۲/۰۶، ۲/۰۲) و ۴/۶۶ کیلو کالری-مربوطه که با استفاده از محاسبات AIM در سطح X محاسباتی M06-2X به دست آمده اند، در شکل ۴ نشان داده شده است. فاصله بین اتمهای مربوطه که با استفاده از محاسبات AIM در سطح X M06-2X و M06-2X به معراه مقادیر تو پولوژیکی مربوطه که با استفاده از محاسبات AIM در سطح X M06-2X به دست آمده اند، در شکل ۴ نشان داده شده است. فاصله بین اتمهای مربوطه که با استفاده از محاسبات AIM در سطح X M06-2X و M06-2X به عمراه مقادیر تو پولوژیکی مربوطه که با استفاده از محاسبات AIM در سطح X M06-2X و معاده در شکل ۴ نشان داده شده است. فاصله بین اتمهای مربوطه که با استفاده از محاسبات AIM در سطح X M06-2X و M06-2X و ۲/۰۶ و ۲/۰۸ می و ۲/۰۸ است به غیر از ساختارهای متعلق به انواع H10 (H10 (H11-H10) گروه های محافظت کننده محاسباتی H10 برای کنفورمرهای و ۲/۰ مالا می به ترتیب Å و ۸/۰۸ مالا است (شکل ۴). محدوده مقادیر H10-1/۰۶ تا (H11-H10 برای کنفورمرهای و ۲/۰۵ به ترتیب از (۲/۰۰ مالا) در و ۹/۰۸ مالا (۱/۰۰ مالا) و (۲/۰۰ مالا) و ۲/۰۸ مالا) در دو سطح محاسباتی B3LYP است.

مقادیر  $(P_{1})^{0} (P_{1})^{0} (P_{1})^{0} = V_{10} - V_{10} -$ 



شکل ٤. دانسیته الکترونی، لاپلاسین و انرژی پتانسیل الکترونی (برحسب واحدهای اتمی a.u.) برای دو ساختار چرخشی*β* دی پپتید محافظت شده سرین-آلانین در سطح محاسباتی M06-2X/6-311+G(d,p). الف)  $\gamma_L^{\ +}\gamma_D^{\ }$  ب $\gamma_L^{\ +}\gamma_D^{\ }$  (نقاط سبز، نقاط بحرانی پیوندی را نشان میدهند)

÷

### ٤. نتيجه گيري

در این تحقیق محاسبات کوانتومی به روش DFT در دو سطح محاسباتیB3LYP و M06-2X و M06-2X و M06-2X و با استفاده از سری پایه -6 HCO-L-ser-L-ala-NH2 بر روی ساختارهای β دی پیتید HCO-L-ser-L-ala-NH2 انجام شده است. از بین ۲۶ ساختار چرخشی β بدست آمدهف کنفورمرهای  ${}^{0}_{L}{}^{+}_{V}$  و  ${}^{0}_{L}{}^{+}_{A}{}^{0}$  به ترتیب پایدارترین و ناپایدارترین ساختارها هستند. محاسبات AIM تشکیل یک حلقه ۱۰ آمدهف کنفورمرهای  ${}^{0}_{L}{}^{+}_{V}$  و  ${}^{0}_{L}{}^{+}_{A}{}^{0}$  به ترتیب پایدارترین و ناپایدارترین ساختارها هستند. محاسبات AIM تشکیل یک حلقه ۱۰ عضوی را به دلیل ایجاد پیوند هیدروژنی قرومهای کربونیل و آمین باقیماندههای i و i = i معنوی را به دلیل ایجاد پیوند هیدروژنی بین اتمهای اکسیژن و هیدروژن گروههای کربونیل و آمین باقیمانده دها i و i = i محضوی را به دلیل ایجاد پیوند هیدروژنی بین اتمهای اکسیژن و هیدروژن گروههای محبوبیل و آمین باقیمانده محا و i = i محضوی را به دلیل ایجاد پیوند های میدروژنی بین از مین باقیمانده و i معنور مرهای  ${}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}_{L}{}^{0}$ 

#### ٥. مراجع

Mondal, S., Chowdhuri, D.S., Ghosh, S., Misra, A. and Dalai, S., 2007. Conformational study on dipeptides containing phenylalanine: A DFT approach. *Journal of Molecular Structure: THEOCHEM*, *810*(1-3), pp.81-89.
Perczel, A., McAllister, M.A., Csaszar, P. and Csizmadia, I.G., 1993. Peptide models 6. New. beta.-turn conformations from ab initio calculations confirmed by x-ray data of proteins. *Journal of the American Chemical Society*, *115*(11), pp.4849-4858.

[3] Fuchs, P.F. and Alix, A.J., 2005. High accuracy prediction of  $\beta$ - turns and their types using propensities and multiple alignments. *Proteins: Structure, Function, and Bioinformatics*, *59*(4), pp.828-839.

[4] Bornot, A. and de Brevern, A.G., 2006. Protein beta-turn assignments. *Bioinformation*, 1(5), p.153.

[5] Matthews, B.W., 1972. The  $\gamma$  turn. Evidence for a new folded conformation in proteins. *Macromolecules*, 5(6), pp.818-819.

[6] Milner-White, E.J., 1990. Situations of gamma-turns in proteins: Their relation to alpha-helices, beta-sheets and ligand binding sites. *Journal of molecular biology*, *216*(2), pp.385-397.

[7] Nataraj, D.V., Srinivasan, N., Sowdhamini, R. and Ramakrishnan, C., 1995. α-Turns in protein structure. *Current Science*, *69*(5), pp.434-447.

[8] Pavone, V., Gaeta, G., Lombardi, A., Nastri, F., Maglio, O., Isernia, C. and Saviano, M., 1996. Discovering protein secondary structures: Classification and description of isolated  $\alpha$ - turns. *Biopolymers*, *38*(6), pp.705-721.

[9] Dasgupta, B. and Chakrabarti, P., 2008. pi-Turns: types, systematics and the context of their occurrence in protein structures. *BMC structural biology*, 8(1), pp.1-14.

[10] Rajashankar, K.R. and Ramakumar, S., 1996.  $\pi$ - Turns in proteins and peptides: Classification, conformation, occurrence, hydration and sequence. *Protein science*, 5(5), pp.932-946.

[11] Richardson, J.S., 1981. The anatomy and taxonomy of protein structure. *Advances in protein chemistry*, *34*, pp.167-339.

[12] de Brevern, A.G., 2016. Extension of the classical classification of  $\beta$ -turns. *Scientific reports*, 6(1), pp.1-15. [13] Venkatachalam, C.M., 1968. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. *Biopolymers: Original Research on Biomolecules*, 6(10), pp.1425-1436.

[14] Metrano, A.J., Abascal, N.C., Mercado, B.Q., Paulson, E.K., Hurtley, A.E. and Miller, S.J., 2017. Diversity of secondary structure in catalytic peptides with  $\beta$ -turn-biased sequences. *Journal of the American Chemical Society*, *139*(1), pp.492-516.

[15] Boussard, G. and Marraud, M., 1985. beta.-Turns in model dipeptides. An infrared quantitative analysis with NMR correlation. *Journal of the American Chemical Society*, *107*(7), pp.1825-1828.

[16] Rainaldi, M., Moretto, V., Crisma, M., Peggion, E., Mammi, S., Toniolo, C. and Cavicchioni, G., 2002. Peptoid residues and  $\beta$ - turn formation. *Journal of peptide science: an official publication of the European Peptide Society*, 8(6), pp.241-252.

[17] Möhle, K., Gußmann, M. and Hofmann, H.J., 1997. Structural and energetic relations between  $\beta$  turns. *Journal of computational chemistry*, *18*(11), pp.1415-1430.

[18] Perczel, A., Jákli, I., McAllister, M.A. and Csizmadia, I.G., 2003. Relative Stability of Major Types of  $\beta$ - Turns as a Function of Amino Acid Composition: A Study Based on Ab Initio Energetic and Natural Abundance Data. *Chemistry–A European Journal*, 9(11), pp.2551-2566.

[19] Chun, C.P., Connor, A.A. and Chass, G.A., 2005. Ab initio conformational analysis of N-and C-terminally-protected valyl-alanine dipeptide model. *Journal of Molecular Structure: THEOCHEM*, 729(3), pp.177-184.

[20] Ramachandhan, G.N., 1968. Need for nonplanar peptide units in polypeptide chains. *Biopolymers: Original Research on Biomolecules*, 6(10), pp.1494-1496.

[21] Ramachandhan, G.N., Ramakrishnan, C. and Sasisekharan, V., 1963. Stereochemistry of polypeptide chain configurations. *Journal of Molecular Biology*, 7, pp.95-99.

[22] Brijbassi, S.U., Sahai, M.A., Setiadi, D.H., Chass, G.A., Penke, B. and Csizmadia, I.G., 2003. An ab initio exploratory study on the conformational features of the dipeptide MeCO-Ala-Ala-NH-Me in its four different configurations: determination of the behaviour of d-enantiomer amino acids within a peptide chain. *Journal of Molecular Structure: THEOCHEM*, 666, pp.291-301.

[23] Chass, G.A., Sahai, M.A., Law, J.M., Lovas, S., Farkas, Ö., Perczel, A., Rivail, J.L. and Csizmadia, I.G., 2002. Toward a computed peptide structure database: The role of a universal atomic numbering system of amino acids in peptides and internal hierarchy of database. *International journal of quantum chemistry*, 90(2), pp.933-968.

[25] Bottoni, A., Duran, M., Lluch, J.M. and Peterson, M.R., 1989. Practical Applications of New Theoretical Concepts in Organic Chemistry. In *New Theoretical Concepts for Understanding Organic Reactions* (pp. 373-385). Springer, Dordrecht.

[26] Bertrán, J., Bertrán, J. and Csizmadia, I.G. eds., 1989. *New Theoretical Concepts for Understanding Organic Reactions* (No. 267). Springer Science & Business Media.

[27] Perczel, A., Angyan, J.G., Kajtar, M., Viviani, W., Rivail, J.L., Marcoccia, J.F. and Csizmadia, I.G., 1991. Peptide models. 1. Topology of selected peptide conformational potential energy surfaces (glycine and alanine derivatives). *Journal of the American chemical society*, *113*(16), pp.6256-6265.

[28] Chahkandi, B. and Chahkandi, M., 2020. A reconnaissance DFT study of the full conformational analysis of N- formyl- L- serine- L- alanine- NH2 dipeptide. *Journal of Molecular Modeling*, 26(6), pp.1-12.

[29] Bader, R.F., 2006. Comment on: Revisiting the variational nature of the quantum theory of atoms in molecules. *Chemical physics letters*, 426(1-3), pp.226-228.

[30] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. and Nakatsuji, H., 2009. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT. *See also: URL: http://www. gaussian. com.* 

[31] Keith, T.A., AIMAll (Version 10.05.04), TK Gristmill Software, Overland Park KS, USA, 2010.

[32] Espinosa, E., Molins, E. and Lecomte, C., 1998. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. *Chemical physics letters*, 285(3-4), pp.170-173.

[33] Bader, R.F. and Essén, H., 1984. The characterization of atomic interactions. *The Journal of chemical physics*, *80*(5), pp.1943-1960.

[34] Babu, K., Ganesh, V., Gadre, S.R. and Ghermani, N.E., 2004. Tailoring approach for exploring electron densities and electrostatic potentials of molecular crystals. *Theoretical Chemistry Accounts*, *111*(2), pp.255-263.

[35] Parthasarathi, R., Subramanian, V. and Sathyamurthy, N.J.T.J.P.C.A., 2006. Hydrogen bonding without borders: an atoms-in-molecules perspective. *The Journal of Physical Chemistry A*, *110*(10), pp.3349-3351.

[36] Koch, U. and Popelier, P.L., 1995. Characterization of CHO hydrogen bonds on the basis of the charge density. *The Journal of Physical Chemistry*, 99(24), pp.9747-9754.

[37] Chou, K.C. and Blinn, J.R., 1997. Classification and prediction of  $\beta$ -turn types. *Journal of protein chemistry*, *16*(6), pp.575-595.

# Theoretical investigation of $\beta$ -turn structures of serine-alanine protected dipeptide using quantum calculations

Behzad Chahkandi\*1

Department of Chemistry, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Submited: 06 September 2021, Revised: 02 December 2021, Accepted: 24 December 2021

#### Abstract

In this research the  $\beta$ -turn structures of L form of serine-alanine protected dipeptide on Ramachandran map were investigated using quantum calculations at the B3LYP/6-311+G(d,p) and M06-2X/6-311+G(d,p) levels of theory in gas phase. Amongst of 243 plossible conformers of N-For-ser-ala-NH<sub>2</sub> protected dipeptide, 26 of the found conformers having  $\beta$ -turn structures. The quantum theory of atoms in molecules were carried out to characterize the nature of the intramolecular hydrogen bonding in  $\beta$ -turn structures. The obtained results reveal that the  $\gamma_L^+\gamma_D$  conformer of type V because of including of three HBs is the most stable one between all  $\beta$ -turn structures. However, the most unstable  $(\alpha_L^a \gamma_L) \beta$ -turn conformer of type I bears two and one HBs at the B3LYP and M06-2X levels of theory, respectively.

Keywords: Dipeptide model, Serine-Alanine,  $\beta$ -turn, Ramachandran, QAIM, DFT, M06-2X.

\*Corresponding author : Behzad Chahkandi

Address: Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Tel: 02332394289 E-mail: b.chahkandi@gmail.com